This paper introduces a new parameterization of deep neural networks (both fully-connected and convolutional) with guaranteed Lipschitz bounds, i.e. limited sensitivity to perturbations. The Lipschitz guarantees are equivalent to the tightest-known bounds based on certification via a semidefinite program (SDP), which does not scale to large models. In contrast to the SDP approach, we provide a ``direct'' parameterization, i.e. a smooth mapping from $\mathbb R^N$ onto the set of weights of Lipschitz-bounded networks. This enables training via standard gradient methods, without any computationally intensive projections or barrier terms. The new parameterization can equivalently be thought of as either a new layer type (the \textit{sandwich layer}), or a novel parameterization of standard feedforward networks with parameter sharing between neighbouring layers. We illustrate the method with some applications in image classification (MNIST and CIFAR-10).
翻译:本文引入了深度神经网络的新参数化( 完全连接和进化), 并有保障的 Lipschitz 界限, 即对扰动的敏感度有限 。 Lipschitz 保证相当于通过半确定程序( SDP) 认证的最接近的界限, 它不至于大规模模型。 与 SDP 方法相反, 我们提供了一个“ 直接” 参数化, 即从$\ mathbbb R ⁇ N$向Lipschitz 约束网络的重量组进行平稳的绘图。 这样就可以通过标准梯度方法进行培训, 而不进行计算密集的预测或屏障条件 。 新的参数化可以被看作一个新的层类型( \ textit{ sandwich plage} ), 或标准进料网络的新参数化参数化, 在相邻的层之间共享。 我们用图像分类中的一些应用方法( MNIST 和 CIFAR- 10 ) 来描述。