We consider estimation of generalized additive models using basis expansions with Bayesian model selection. Although Bayesian model selection is an intuitively appealing tool for regression splines caused by the flexible knot placement and model-averaged function estimates, its use has traditionally been limited to Gaussian additive regression, as posterior search of the model space requires a tractable form of the marginal model likelihood. We introduce an extension of the method to distributions belonging to the exponential family using the Laplace approximation to the likelihood. Although the Laplace approximation is successful with all Gaussian-type prior distributions in providing a closed-form expression of the marginal likelihood, there is no broad consensus on the best prior distribution to be used for nonparametric regression via model selection. We observe that the classical unit information prior distribution for variable selection may not be suitable for nonparametric regression using basis expansions. Instead, our study reveals that mixtures of g-priors are more suitable. A large family of mixtures of g-priors is considered for a detailed examination of how various mixture priors perform in estimating generalized additive models. Furthermore, we compare several priors of knots for model selection-based spline approaches to determine the most practically effective scheme. The model selection-based estimation methods are also compared with other Bayesian approaches to function estimation. Extensive simulation studies demonstrate the validity of the model selection-based approaches. We provide an R package for the proposed method.
翻译:我们考虑利用贝叶西亚模型选择基础扩展来估计通用添加模型。虽然贝叶西亚模型选择是灵活结结置和模型平均函数估计引起的回归样板的直觉吸引力工具,但其使用传统上仅限于高西亚叠加回归,因为对模型空间的后部搜索需要一种边际模型可能性的可移植形式。我们采用了一种扩大方法,将分配方法扩大到使用拉贝近点和可能性的指数家族的分布。虽然拉普尔近似值在提供边缘可能性的封闭式表达方式方面是成功的,但对于通过模型选择将先前的最佳分配用于非参数回归的最佳分配没有广泛的共识。我们发现,用于变量选择的经典单位信息在分配之前可能不适合使用基础扩展的非参数回归。我们的研究显示,使用基底偏差近点近似点的混合物更为合适。一个大型的基点混合物模型用于详细审查各种混合物在估计通用添加模型方面以前的表现。此外,我们比较了以前用于通过模型选择方法进行非参数分析的模型选择方法。我们比较了用于选择基础选择方法的其他方法的模型选择方法。我们比较了以实际方法的模型选择方法。