New upper bounds are developed for the $L_2$ distance between $\xi/\text{Var}[\xi]^{1/2}$ and linear and quadratic functions of $z\sim N(0,I_n)$ for random variables of the form $\xi=bz^\top f(z) - \text{div} f(z)$. The linear approximation yields a central limit theorem when the squared norm of $f(z)$ dominates the squared Frobenius norm of $\nabla f(z)$ in expectation. Applications of this normal approximation are given for the asymptotic normality of de-biased estimators in linear regression with correlated design and convex penalty in the regime $p/n \le \gamma$ for constant $\gamma\in(0,{\infty})$. For the estimation of linear functions $\langle a_0,\beta\rangle$ of the unknown coefficient vector $\beta$, this analysis leads to asymptotic normality of the de-biased estimate for most normalized directions $a_0$, where ``most'' is quantified in a precise sense. This asymptotic normality holds for any convex penalty if $\gamma<1$ and for any strongly convex penalty if $\gamma\ge 1$. In particular the penalty needs not be separable or permutation invariant. By allowing arbitrary regularizers, the results vastly broaden the scope of applicability of de-biasing methodologies to obtain confidence intervals in high-dimensions. In the absence of strong convexity for $p>n$, asymptotic normality of the de-biased estimate is obtained for the Lasso and the group Lasso under additional conditions. For general convex penalties, our analysis also provides prediction and estimation error bounds of independent interest.


翻译:$\xi/\ text{ var} [\xi]\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\Var}[\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\L\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
0+阅读 · 2021年11月20日
Arxiv
3+阅读 · 2018年10月18日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
人脸检测库:libfacedetection
Python程序员
15+阅读 · 2019年3月22日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员