We present a new data structure to approximate accurately and efficiently a polynomial $f$ of degree $d$ given as a list of coefficients. Its properties allow us to improve the state-of-the-art bounds on the bit complexity for the problems of root isolation and approximate multipoint evaluation. This data structure also leads to a new geometric criterion to detect ill-conditioned polynomials, implying notably that the standard condition number of the zeros of a polynomial is at least exponential in the number of roots of modulus less than $1/2$ or greater than $2$.Given a polynomial $f$ of degree $d$ with $\|f\|_1 \leq 2^\tau$ for $\tau \geq 1$, isolating all its complex roots or evaluating it at $d$ points can be done with a quasi-linear number of arithmetic operations. However, considering the bit complexity, the state-of-the-art algorithms require at least $d^{3/2}$ bit operations even for well-conditioned polynomials and when the accuracy required is low. Given a positive integer $m$, we can compute our new data structure and evaluate $f$ at $d$ points in the unit disk with an absolute error less than $2^{-m}$ in $\widetilde O(d(\tau+m))$ bit operations, where $\widetilde O(\cdot)$ means that we omit logarithmic factors. We also show that if $\kappa$ is the absolute condition number of the zeros of $f$, then we can isolate all the roots of $f$ in $\widetilde O(d(\tau + \log \kappa))$ bit operations. Moreover, our algorithms are simple to implement. For approximating the complex roots of a polynomial, we implemented a small prototype in Python/NumPy that is an order of magnitude faster than the state-of-the-art solver MPSolve for high degree polynomials with random coefficients.
翻译:我们提出了一个新的数据结构, 以准确和高效的方式接近一个多角度的离子值( 以美元计度) 。 它的属性允许我们改进对根隔离和多点评估问题的比分复杂性的状态值。 这个数据结构还导致一个新的几何标准, 以检测条件差的多语种, 特别是多语种的零的标准条件值至少是微调根数( 以美元计值小于1/2美元或超过2美元 。 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计值, 以美元计价, 以美元计值, 以美元计值, 以美元计值表示的绝对值值值值值。