We study \textit{rescaled gradient dynamical systems} in a Hilbert space $\mathcal{H}$, where implicit discretization in a finite-dimensional Euclidean space leads to high-order methods for solving monotone equations (MEs). Our framework can be interpreted as a natural generalization of celebrated dual extrapolation method~\citep{Nesterov-2007-Dual} from first order to high order via appeal to the regularization toolbox of optimization theory~\citep{Nesterov-2021-Implementable, Nesterov-2021-Inexact}. More specifically, we establish the existence and uniqueness of a global solution and analyze the convergence properties of solution trajectories. We also present discrete-time counterparts of our high-order continuous-time methods, and we show that the $p^{th}$-order method achieves an ergodic rate of $O(k^{-(p+1)/2})$ in terms of a restricted merit function and a pointwise rate of $O(k^{-p/2})$ in terms of a residue function. Under regularity conditions, the restarted version of $p^{th}$-order methods achieves local convergence with the order $p \geq 2$. Notably, our methods are \textit{optimal} since they have matched the lower bound established for solving the monotone equation problems under a standard linear span assumption~\citep{Lin-2022-Perseus}.
翻译:我们在一个 Hilbert 空间 $\ mathcal{H} 中研究\ textit{ 缩放梯度动态系统} $\ mathcal{H} 。 更具体地说, 我们建立全球解决方案的存在和独特性, 分析解决方案轨迹的趋同性。 我们还提出我们高端连续时间方法的离异性对应方, 我们显示, $- serve 方法从第一顺序到高顺序, 通过调用优化理论的正规化工具箱{ pcitep{ Nesterov-2021-可实施, Nesterov-2021- Inact} 。 更具体地说, 我们建立全球解决方案的存在和独特性, 分析解决方案轨迹的趋同性特性。 我们还提出我们高端连续时间方法的离异性对应方, 我们显示, $_} $- serformal 方法从限量功能到标准 $( p+1/2} 标准性工具箱 $ (他们) = 20_ bretesternial licommain main main mail mailty 。 在 ration ral ral ral ress rotition ral r) 的常规方法下, 。