For decades, uncertainty quantification techniques based on the spectral approach have been demonstrated to be computationally more efficient than the Monte Carlo method for a wide variety of problems, particularly when the dimensionality of the probability space is relatively low. The time-dependent generalized polynomial chaos (TD-gPC) is one such technique that uses an evolving orthogonal basis to better represent the stochastic part of the solution space in time. In this paper, we present a new numerical method that uses the concept of 'enriched stochastic flow maps' to track the evolution of the stochastic part of the solution space in time. The computational cost of this proposed flow-driven stochastic chaos (FSC) method is an order of magnitude lower than TD-gPC for comparable solution accuracy. This gain in computational cost is realized because, unlike most existing methods, the number of basis vectors required to track the stochastic part of the solution space, and consequently the computational cost associated with the solution of the resulting system of equations, does not depend upon the dimensionality of the probability space. Four representative numerical examples are presented to demonstrate the performance of the FSC method for long-time integration of second-order stochastic dynamical systems in the context of stochastic dynamics of structures.


翻译:数十年来,基于光谱方法的不确定性量化技术被证明比蒙特卡洛方法在一系列广泛问题上的计算效率更高,特别是在概率空间的维度相对较低的情况下。基于时间的通用多元混杂(TD-gPC)是一种技术,它使用不断演变的正方位基础,以更好地代表解决办法空间的随机部分。在本文件中,我们提出了一个新的数字方法,使用“丰富的随机流图”的概念来跟踪溶液空间中随机部分的演变过程,并不取决于空间的二次概率。这种拟议流动驱动的随机混乱(FSC)方法的计算成本比TD-gPC的数值要低,以比较的溶液准确性。计算成本的增加之所以得以实现,是因为与大多数现有方法不同,跟踪溶液空间的随机部分所需的基矢量数量,以及由此产生的方程系统解决方案的计算成本,并不取决于空间的二次概率。在长期动态结构中,有四个具有代表性的方位数字到动态结构,以演示空间系统的长期动态系统。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
70+阅读 · 2022年6月28日
南大《优化方法 (Optimization Methods》课程,推荐!
专知会员服务
77+阅读 · 2022年4月3日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
75+阅读 · 2020年7月26日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年9月16日
Arxiv
0+阅读 · 2022年9月15日
The Fragility of Optimized Bandit Algorithms
Arxiv
0+阅读 · 2022年9月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员