Stochastic rounding (SR) offers an alternative to the deterministic IEEE-754 floating-point rounding modes. In some applications such as PDEs, ODEs and neural networks, SR empirically improves the numerical behavior and convergence to accurate solutions while no sound theoretical background has been provided. Recent works by Ipsen, Zhou, Higham, and Mary have computed SR probabilistic error bounds for basic linear algebra kernels. For example, the inner product SR probabilistic bound of the forward error is proportional to $\sqrt$ nu instead of nu for the default rounding mode. To compute the bounds, these works show that the errors accumulated in computation form a martingale. This paper proposes an alternative framework to characterize SR errors based on the computation of the variance. We pinpoint common error patterns in numerical algorithms and propose a lemma that bounds their variance. For each probability and through Bienaym{\'e}-Chebyshev inequality, this bound leads to better probabilistic error bound in several situations. Our method has the advantage of providing a tight probabilistic bound for all algorithms fitting our model. We show how the method can be applied to give SR error bounds for the inner product and Horner polynomial evaluation.
翻译:软圆形 (SR) 提供了确定性 IEEE-754 浮点圆形模式的替代模式。 在PDEs、 ODEs 和神经网络等一些应用程序中, SR 实验性地改进了数值行为和对准确解决方案的趋同, 而没有提供合理的理论背景 。 Ipsen、 Zhou、 Higham 和 Mary 最近的作品为基本线性代数内核计算了SR 概率差幅。 例如, 远端错误的内产物 SR 概率约束与 $\ qrt$ nu 而不是 默认圆圈模式的nu 相称。 为了计算界限, 这些工程显示在计算中累积的错误形成一个martingale 。 本文提出了一个根据差异计算来描述SR错误的替代框架。 我们在数值算法中找到常见的错误模式, 并提议一个约束其差异的 Lemmma 。 对于每个概率和通过 Bienaym e- Chebyshev 不平等性, 这个内框性约束导致更好的概率差错, 在几种情况下, 我们使用一个严格性模型, 我们的内置的模型的优势是如何显示我们的内值。