In this paper we propose a novel bipedal locomotion controller that uses noisy exteroception to traverse a wide variety of terrains. Building on the cutting-edge advancements in attention based belief encoding for quadrupedal locomotion, our work extends these methods to the bipedal domain, resulting in a robust and reliable internal belief of the terrain ahead despite noisy sensor inputs. Additionally, we present a reward function that allows the controller to successfully traverse irregular terrain. We compare our method with a proprioceptive baseline and show that our method is able to traverse a wide variety of terrains and greatly outperforms the state-of-the-art in terms of robustness, speed and efficiency.
翻译:在本文中,我们提出了一种新颖的双足步态控制器,利用嘈杂的外部知觉来穿越各种地形。基于关注力为基础的四足步态学习的最新进展,我们的工作将这些方法推广到双足步态领域,从而在嘈杂的传感器输入下获得强大而可靠的地形前置信念。此外,我们提出了一种奖励函数,使控制器能够成功地穿越不规则地形。我们将我们的方法与基于位置感知的基线方法进行了比较,并表明我们的方法能够穿越各种地形,并在稳健性、速度和效率方面大大优于现有最新技术。