Low rank matrix approximation is a popular topic in machine learning. In this paper, we propose a new algorithm for this topic by minimizing the least-squares estimation over the Riemannian manifold of fixed-rank matrices. The algorithm is an adaptation of classical gradient descent within the framework of optimization on manifolds. In particular, we reformulate an unconstrained optimization problem on a low-rank manifold into a differential dynamic system. We develop a splitting numerical integration method by applying a splitting integration scheme to the dynamic system. We conduct the convergence analysis of our splitting numerical integration algorithm. It can be guaranteed that the error between the recovered matrix and true result is monotonically decreasing in the Frobenius norm. Moreover, our splitting numerical integration can be adapted into matrix completion scenarios. Experimental results show that our approach has good scalability for large-scale problems with satisfactory accuracy
翻译:低级矩阵近似是机器学习中流行的一个专题。 在本文中, 我们提出一个新的算法, 最大限度地减少对固定级矩阵里曼尼方块的最小比例估计。 该算法是在优化元块框架内对经典梯度下降的适应性。 特别是, 我们重新将低级元块上不受限制的优化问题改造成差异动态系统。 我们通过对动态系统应用分裂整合计划, 开发了分裂数字整合方法。 我们对分级数字整合算法进行了趋同分析。 我们可以保证, 回收的矩阵和真实结果之间的错误在Frobenius规范中将单方递减。 此外, 我们的分级数字整合可以调整为矩阵完成情景。 实验结果显示, 我们的方法对于大规模且准确性的问题具有很好的伸缩性。