An important challenge in statistical analysis lies in controlling the estimation bias when handling the ever-increasing data size and model complexity. For example, approximate methods are increasingly used to address the analytical and/or computational challenges when implementing standard estimators, but they often lead to inconsistent estimators. So consistent estimators can be difficult to obtain, especially for complex models and/or in settings where the number of parameters diverges with the sample size. We propose a general simulation-based estimation framework that allows to construct consistent and bias corrected estimators for parameters of increasing dimensions. The key advantage of the proposed framework is that it only requires to compute a simple inconsistent estimator multiple times. The resulting Just Identified iNdirect Inference estimator (JINI) enjoys nice properties, including consistency, asymptotic normality, and finite sample bias correction better than alternative methods. We further provide a simple algorithm to construct the JINI in a computationally efficient manner. Therefore, the JINI is especially useful in settings where standard methods may be challenging to apply, for example, in the presence of misclassification and rounding. We consider comprehensive simulation studies and analyze an alcohol consumption data example to illustrate the excellent performance and usefulness of the method.
翻译:统计分析中的一个重要挑战是在处理不断增加的数据规模和模型复杂性时控制估计偏差,例如,在执行标准估计器时,近似方法越来越多地被用来应对分析和/或计算方面的挑战,但往往导致估算器不一致。因此,难以获得一致的估算器,对于复杂模型和/或参数数量与抽样规模不同的环境而言尤其如此。我们提议了一个一般模拟估算框架,以便能够为不断增加的参数建立一致和有偏差的校正估计器。拟议框架的主要优点是,只需对简单的不一致估计器多次进行计算即可。由此产生的简单识别的iN直接推断估测器(JINI)具有良好的特性,包括一致性、无症状的正常性、以及比替代方法更好的有限抽样偏差校正。我们进一步提供了一种简单的算法,以计算高效的方式构建JNI。因此,在标准方法可能难以应用的环境中,例如,在分类错误和四舍五入时,JININI特别有用。我们考虑全面模拟研究,并分析一种业绩方法,例如模拟,以出色的消费方法分析。