In 1979, Miller proved that for a group $G$ of odd order, two minimal group codes in $\mathbb{F}_2G$ are $G$-equivalent if and only they have identical weight distribution. In 2014, Ferraz-Guerreiro-Polcino Milies disprove Miller's result by giving an example of two non-$G$-equivalent minimal codes with identical weight distribution. In this paper, we give a characterization of finite abelian groups so that over a specific set of group codes, equality of important parameters of two codes implies the $G$-equivalence of these two codes. As a corollary, we prove that two minimal codes with the same weight distribution are $G$-equivalent if and only if for each prime divisor $p$ of $|G|$, the Sylow $p$-subgroup of $G$ is homocyclic.
翻译:1979年,米勒证明,对于一个奇数的集团来说,以美元计价的两套最低组号($mathbb{F ⁇ 2G$)等于美元($G$),只要它们有相同的重量分布。 2014年,Ferraz-Guerreiro-Polcino Milies否定了米勒的结果,举了一个非G$等价最低组号的例子,其重量分布相同。 在本文中,我们给出了限定的贝贝里安组的特征,这样,在一组特定群号中,两种守则的重要参数的等值意味着这两套守则的等值值。作为推论,我们证明,两个具有相同重量分布的最小组号($G$)等于G$($),如果而且只有每只对每个正数的基数($)美元,Sylow $p$($)分组的G$($)是同环。