We address the solution of large-scale Bayesian optimal experimental design (OED) problems governed by partial differential equations (PDEs) with infinite-dimensional parameter fields. The OED problem seeks to find sensor locations that maximize the expected information gain (EIG) in the solution of the underlying Bayesian inverse problem. Computation of the EIG is usually prohibitive for PDE-based OED problems. To make the evaluation of the EIG tractable, we approximate the (PDE-based) parameter-to-observable map with a derivative-informed projected neural network (DIPNet) surrogate, which exploits the geometry, smoothness, and intrinsic low-dimensionality of the map using a small and dimension-independent number of PDE solves. The surrogate is then deployed within a greedy algorithm-based solution of the OED problem such that no further PDE solves are required. We analyze the EIG approximation error in terms of the generalization error of the DIPNet, and demonstrate the efficiency and accuracy of the method via numerical experiments involving inverse scattering and inverse reactive transport.
翻译:我们用无限参数字段解决由部分差异方程式(PDEs)管理的大规模巴伊西亚最佳实验设计(OED)问题。OED问题试图找到在解决巴伊西亚反向问题时最大限度地实现预期信息获取(EIG)的传感器位置。EIG的计算通常对基于PDE的OED问题来说是令人望而却步的。为了使对EIG(基于PDE的)参数到可观测的地图的评估能够进行,我们将(基于PDE的)参数与可观测的地图相近,以衍生出源信息化的预测神经网络(DIPNet)替代网络(DIPNet)为对象,利用地图的几何、光滑度和内在的低维度,利用少量的PDE解决方案。然后,在基于贪婪算法的OED问题解决方案中部署代号,因此不需要进一步的PDE解决方案。我们从DIPNet的普及错误的角度分析了EIG近似误差,并通过涉及反向分散和反向反应运输的数字实验,展示方法的效率和准确性。