Display Ads and the generalized assignment problem are two well-studied online packing problems with important applications in ad allocation and other areas. In both problems, ad impressions arrive online and have to be allocated immediately to budget-constrained advertisers. Worst-case algorithms that achieve the ideal competitive ratio are known, but might act overly conservative given the predictable and usually tame nature of real-world input. Given this discrepancy, we develop an algorithm for both problems that incorporate machine-learned predictions and can thus improve the performance beyond the worst-case. Our algorithm is based on the work of Feldman et al. (2009) and similar in nature to Mahdian et al. (2007) who were the first to develop a learning-augmented algorithm for the related, but more structured Ad Words problem. We use a novel analysis to show that our algorithm is able to capitalize on a good prediction, while being robust against poor predictions. We experimentally evaluate our algorithm on synthetic and real-world data on a wide range of predictions. Our algorithm is consistently outperforming the worst-case algorithm without predictions.
翻译:显示 Ad 和 通用派任 问题 是 两种经过深思熟虑的在线包装问题, 在 分配 和其他 领域 的 重要 应用 。 在这两个问题中, 印象都出现在网上, 必须立即分配给预算限制的广告商 。 最坏的算法, 达到理想的竞争比率是已知的, 但鉴于真实世界投入的可预见性和通常驯服性, 可能表现过度保守 。 鉴于这一差异, 我们为这两个问题开发了一种算法, 其中包括机器学的预测, 从而可以改善最坏的性能。 我们的算法基于 Feldman 等人(2009年) 的工作, 性质与 Mahdian 等人(2007年) 相似, 后者是第一个为相关但结构更完善的Ad Words 问题开发学习强化算法的。 我们使用新分析来显示我们的算法能够利用良好的预测, 同时对错误的预测力很强。 我们实验性地评估我们合成和真实世界数据的算法, 在广泛的预测中 。 我们的算法总是比最坏的算法更差的算法, 而没有预测。