We propose two robust methods for testing hypotheses on unknown parameters of predictive regression models under heterogeneous and persistent volatility as well as endogenous, persistent and/or fat-tailed regressors and errors. The proposed robust testing approaches are applicable both in the case of discrete and continuous time models. Both of the methods use the Cauchy estimator to effectively handle the problems of endogeneity, persistence and/or fat-tailedness in regressors and errors. The difference between our two methods is how the heterogeneous volatility is controlled. The first method relies on robust t-statistic inference using group estimators of a regression parameter of interest proposed in Ibragimov and Muller, 2010. It is simple to implement, but requires the exogenous volatility assumption. To relax the exogenous volatility assumption, we propose another method which relies on the nonparametric correction of volatility. The proposed methods perform well compared with widely used alternative inference procedures in terms of their finite sample properties.


翻译:我们提出了两种鲁棒方法,用于测试具有异质和持续波动率以及内源、持续和/或厚尾回归和误差的预测回归模型的未知参数的假设。所提出的鲁棒测试方法适用于离散和连续时间模型。两种方法都使用柯西估计量,以有效地处理回归器和误差中的内生性、持续性和/或厚尾性问题。我们两种方法之间的区别在于如何控制异质波动率。第一种方法依赖于在Ibragimov和Muller(2010)中提出的感兴趣的回归参数的组估计量,使用鲁棒t统计量推断。它很容易实现,但需要外生波动率假设。为了放松外生波动率假设,我们提出了另一种方法,该方法依赖于波动率的非参数校正。与广泛使用的替代推断程序相比,所提出的方法在其有限样本性质方面表现良好。

0
下载
关闭预览

相关内容

干货书!基于单调算子的大规模凸优化,348页pdf
专知会员服务
48+阅读 · 2022年7月24日
专知会员服务
77+阅读 · 2021年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【泡泡一分钟】DS-SLAM: 动态环境下的语义视觉SLAM
泡泡机器人SLAM
23+阅读 · 2019年1月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月14日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员