We propose two robust methods for testing hypotheses on unknown parameters of predictive regression models under heterogeneous and persistent volatility as well as endogenous, persistent and/or fat-tailed regressors and errors. The proposed robust testing approaches are applicable both in the case of discrete and continuous time models. Both of the methods use the Cauchy estimator to effectively handle the problems of endogeneity, persistence and/or fat-tailedness in regressors and errors. The difference between our two methods is how the heterogeneous volatility is controlled. The first method relies on robust t-statistic inference using group estimators of a regression parameter of interest proposed in Ibragimov and Muller, 2010. It is simple to implement, but requires the exogenous volatility assumption. To relax the exogenous volatility assumption, we propose another method which relies on the nonparametric correction of volatility. The proposed methods perform well compared with widely used alternative inference procedures in terms of their finite sample properties.
翻译:我们提出了两种鲁棒方法,用于测试具有异质和持续波动率以及内源、持续和/或厚尾回归和误差的预测回归模型的未知参数的假设。所提出的鲁棒测试方法适用于离散和连续时间模型。两种方法都使用柯西估计量,以有效地处理回归器和误差中的内生性、持续性和/或厚尾性问题。我们两种方法之间的区别在于如何控制异质波动率。第一种方法依赖于在Ibragimov和Muller(2010)中提出的感兴趣的回归参数的组估计量,使用鲁棒t统计量推断。它很容易实现,但需要外生波动率假设。为了放松外生波动率假设,我们提出了另一种方法,该方法依赖于波动率的非参数校正。与广泛使用的替代推断程序相比,所提出的方法在其有限样本性质方面表现良好。