Botnet attacks are a major threat to networked systems because of their ability to turn the network nodes that they compromise into additional attackers, leading to the spread of high volume attacks over long periods. The detection of such Botnets is complicated by the fact that multiple network IP addresses will be simultaneously compromised, so that Collective Classification of compromised nodes, in addition to the already available traditional methods that focus on individual nodes, can be useful. Thus this work introduces a collective Botnet attack classification technique that operates on traffic from an n-node IP network with a novel Associated Random Neural Network (ARNN) that identifies the nodes which are compromised. The ARNN is a recurrent architecture that incorporates two mutually associated, interconnected and architecturally identical n-neuron random neural networks, that act simultneously as mutual critics to reach the decision regarding which of n nodes have been compromised. A novel gradient learning descent algorithm is presented for the ARNN, and is shown to operate effectively both with conventional off-line training from prior data, and with on-line incremental training without prior off-line learning. Real data from a 107 node packet network is used with over 700,000 packets to evaluate the ARNN, showing that it provides accurate predictions. Comparisons with other well-known state of the art methods using the same learning and testing datasets, show that the ARNN offers significantly better performance.


翻译:Botnet攻击是网络系统面临的主要威胁之一,它们能够将它们攻占的网络节点转化为附加攻击者,从而导致高容量攻击的传播时间延长。检测这样的Botnets的复杂性在于,多个网络IP地址将同时受到攻击,因此除了已有的专注于个体节点的传统方法,集体节点的分类有可能会更有用。因此,本文提出了一种在具有n节点的IP网络上操作的集体Botnet攻击分类技术,该技术使用新颖的关联随机神经网络(ARNN)识别被攻占的节点。ARNN是一种循环架构,其中包含两个互相关联、相互连接和架构相同的n神经元随机神经网络,它们同时作为相互批判的评委,以决定哪些n个节点已被攻占。本文介绍了一种ARNN的新颖梯度学习下降算法,并证明它既可以通过传统的离线训练从先前数据中训练,也可以在没有先前离线学习的情况下进行在线增量训练,操作有效。使用超过700,000个数据包的107节数据包网络的真实数据验证了ARNN的准确性。与使用相同学习和测试数据集的其他知名最先进方法进行比较,表明ARNN提供了显着更好的性能。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
12+阅读 · 2019年3月14日
Arxiv
12+阅读 · 2018年9月15日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2020年12月18日
专知会员服务
44+阅读 · 2020年10月31日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】全卷积语义分割综述
机器学习研究会
19+阅读 · 2017年8月31日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员