While supervised learning assumes the presence of labeled data, we may have prior information about how models should behave. In this paper, we formalize this notion as learning from explanation constraints and provide a learning theoretic framework to analyze how such explanations can improve the learning of our models. For what models would explanations be helpful? Our first key contribution addresses this question via the definition of what we call EPAC models (models that satisfy these constraints in expectation over new data), and we analyze this class of models using standard learning theoretic tools. Our second key contribution is to characterize these restrictions (in terms of their Rademacher complexities) for a canonical class of explanations given by gradient information for linear models and two layer neural networks. Finally, we provide an algorithmic solution for our framework, via a variational approximation that achieves better performance and satisfies these constraints more frequently, when compared to simpler augmented Lagrangian methods to incorporate these explanations. We demonstrate the benefits of our approach over a large array of synthetic and real-world experiments.
翻译:虽然监督学习假设有标记数据的存在,但我们可能具有关于模型应该如何表现的先前信息。在本文中,我们把这种观念形式化为学习从解释限制中,并提供了一个学习理论框架来分析这种解释如何改进模型的学习。哪些模型会受到解释的帮助?我们的第一个关键贡献通过定义我们称之为EPAC模型的模型来回答这个问题(在新数据的期望上满足这些约束的模型),并使用标准的学习理论工具来分析这一类模型。我们的第二个关键贡献是为梯度信息所给出的用于线性模型和两层神经网络的标准解释这一类解释(以其Rademacher复杂性的形式)对这些限制进行表征。最后,我们通过一种变分近似的算法解决了我们的框架,并证明了与简单的加权拉格朗日方法相比,我们的方法在更频繁地满足这些限制的同时实现了更好的性能。我们在大量的合成和真实世界实验中证明了我们方法的优势。