We present discontinuous Galerkin (DG) methods for solving a first-order semi-linear hyperbolic system, which was originally proposed as a continuum model for a one-dimensional dimer lattice of topological resonators. We examine the energy-conserving or energy-dissipating property in relation to the choices of simple, mesh-independent numerical fluxes. We demonstrate that, with certain numerical flux choices, our DG method achieves optimal convergence in the $L^2$ norm. We provide numerical experiments that validate and illustrate the effectiveness of our proposed numerical methods.
翻译:我们提出了离散Galerkin(DG)方法,用于解决一阶半线性双曲型系统,该系统最初被提出作为拓扑谐振器一维二聚体晶格的连续体模型。我们检查各种简单的、与网格无关的数值通量选择与与能量守恒或耗散性质的关系。我们证明,在某些数值通量选择下,我们的DG方法可以在$L^2$范数意义下实现最优收敛性。我们提供了验证和说明我们所提出的数值方法的有效性的数值实验。