基于PyTorch/TorchText的自然语言处理库

2019 年 4 月 22 日 专知

导读

TorchNLP是NLP任务的深度学习库。TorchNLP基于PyTorch和TorchText构建,尝试提供跨任务工作的可重用组件。目前它可以用于命名实体识别(NER)和具有双向LSTM CRF模型和Transformer模型的Chunking任务。它可以支持使用CoNLL2003格式的数据集。

作者 | kolloldas 

Github:https://github.com/kolloldas/torchnlp


高级工作流

  1. 定义NLP任务

  2. 拓展Model类并实现forward()和lost()方法,分别返回预测和损失

  3. 用HParams类简单定义超参

  4. 定义一个数据函数来使用TorchText API返回DataSet迭代器、词汇表等。选中conll.py作为示例

  5. 设置Evaluator和Trainer类以使用模型、数据集迭代器和度量,查看ner.py查看详情

  6. 运行trainer,获取epoch次数early stopping criteria

  7. 使用evaluator对特定数据集上训练的模型进行评估

  8. 在训练的模型上运行inference



部件

  • Model: 处理模型的加载和保存以及相关的超参数;

  • HParams: 定义超参;

  • Trainer: 在数据集上训练给定的模型。支持预定义的学习速率衰减和early stopping等功能;

  • Evaluator: 评估模型;

  • get_input_processor_words: 在推理期间使用它可以快速地将输入字符串转换成模型可以处理的格式。


支持的模型

  • transformer.Encodertransformer.Decoder: Transfomer network implementation from Attention is all you need

  • CRF: Conditional Random Field layer which can be used as the final output

  • TransformerTagger: Sequence tagging model implemented using the Transformer network and CRF

  • BiLSTMTagger: Sequence tagging model implemented using bidirectional LSTMs and CRF


安装

TorchNLP requires a minimum of Python 3.5 and PyTorch 0.4.0 to run. Check Pytorch for the installation steps. Clone this repository and install other dependencies like TorchText:

pip install -r requirements.txt

Go to the root of the project and check for integrity with PyTest:

pytest

Install this project:

python setup.py


使用

NER Task

The NER task can be run on any dataset that confirms to the CoNLL 2003 format. To use the CoNLL 2003 NER dataset place the dataset files in the following directory structure within your workspace root:

.data
|
|---conll2003
|
|---eng.train.txt
|---eng.testa.txt
|---eng.testb.txt

eng.testa.txt is used the validation dataset and eng.testb.txt is used as the test dataset.

Start the NER module in the python shell which sets up the imports:

python -i -m torchnlp.ner

Task: Named Entity Recognition

Available models:
-------------------
TransformerTagger

Sequence tagger using the Transformer network (https://arxiv.org/pdf/1706.03762.pdf)
Specifically it uses the Encoder module. For character embeddings (per word) it uses
the same Encoder module above which an additive (Bahdanau) self-attention layer is added

BiLSTMTagger

Sequence tagger using bidirectional LSTM. For character embeddings per word
uses (unidirectional) LSTM


Available datasets:
-------------------
conll2003: Conll 2003 (Parser only. You must place the files)

>>>

Train the Transformer model on the CoNLL 2003 dataset:

>>> train('ner-conll2003', TransformerTagger, conll2003)

The first argument is the task name. You need to use the same task name during evaluation and inference. By default the train function will use the F1 metric with a window of 5 epochs to perform early stopping. To change the early stopping criteria set the PREFS global variable as follows:

>>> PREFS.early_stopping='lowest_3_loss'

This will now use validation loss as the stopping criteria with a window of 3 epochs. The model files are saved under taskname-modelname directory. In this case it is ner-conll2003-TransformerTagger

Evaluate the trained model on the testb dataset split:

>>> evaluate('ner-conll2003', TransformerTagger, conll2003, 'test')

It will display metrics like accuracy, sequence accuracy, F1 etc

Run the trained model interactively for the ner task:

>>> interactive('ner-conll2003', TransformerTagger)
...
Ctrl+C to quit
> Tom went to New York
I-PER O O I-LOC I-LOC

You can similarly train the bidirectional LSTM CRF model by using the BiLSTMTagger class. Customizing hyperparameters is quite straight forward. Let's look at the hyperparameters for TransformerTagger:

>>> h2 = hparams_transformer_ner()
>>> h2

Hyperparameters:
filter_size=128
optimizer_adam_beta2=0.98
learning_rate=0.2
learning_rate_warmup_steps=500
input_dropout=0.2
embedding_size_char=16
dropout=0.2
hidden_size=128
optimizer_adam_beta1=0.9
embedding_size_word=300
max_length=256
attention_dropout=0.2
relu_dropout=0.2
batch_size=100
num_hidden_layers=1
attention_value_channels=0
attention_key_channels=0
use_crf=True
embedding_size_tags=100
learning_rate_decay=noam_step
embedding_size_char_per_word=100
num_heads=4
filter_size_char=64

Now let's disable the CRF layer:

>>> h2.update(use_crf=False)

Hyperparameters:
filter_size=128
optimizer_adam_beta2=0.98
learning_rate=0.2
learning_rate_warmup_steps=500
input_dropout=0.2
embedding_size_char=16
dropout=0.2
hidden_size=128
optimizer_adam_beta1=0.9
embedding_size_word=300
max_length=256
attention_dropout=0.2
relu_dropout=0.2
batch_size=100
num_hidden_layers=1
attention_value_channels=0
attention_key_channels=0
use_crf=False
embedding_size_tags=100
learning_rate_decay=noam_step
embedding_size_char_per_word=100
num_heads=4
filter_size_char=64

Use it to re-train the model:

>>> train('ner-conll2003-nocrf', TransformerTagger, conll2003, hparams=h2)

Along with the model the hyperparameters are also saved so there is no need to pass the HParams object during evaluation. Also note that by default it will not overwrite any existing model directories (will rename instead). To change that behavior set the PREFS variable:

>>> PREFS.overwrite_model_dir = True

The PREFS variable is automatically persisted in prefs.json

Chunking Task

The CoNLL 2000 dataset is available for the Chunking task. The dataset is automatically downloaded from the public repository so you don't need to manually download it.

Start the Chunking task:

python -i -m torchnlp.chunk

Train the Transformer model:

>>> train('chunk-conll2000', TransformerTagger, conll2000)

There is no validation partition provided in the repository hence 10% of the training set is used for validation.

Evaluate the model on the test set:

>>> evaluate('chunk-conll2000', TransformerTagger, conll2000, 'test')


独立使用

The transformer.Encodertransformer.Decoder and CRF modules can be independently imported as they only depend on PyTorch:

from torchnlp.modules.transformer import Encoder
from torchnlp.modules.transformer import Decoder
from torchnlp.modules.crf import CRF


-END-

专 · 知

专知,专业可信的人工智能知识分发,让认知协作更快更好!欢迎登录www.zhuanzhi.ai,注册登录专知,获取更多AI知识资料!

欢迎微信扫一扫加入专知人工智能知识星球群,获取最新AI专业干货知识教程视频资料和与专家交流咨询!

请加专知小助手微信(扫一扫如下二维码添加),加入专知人工智能主题群,咨询技术商务合作~

专知《深度学习:算法到实战》课程全部完成!530+位同学在学习,现在报名,限时优惠!网易云课堂人工智能畅销榜首位!

点击“阅读原文”,了解报名专知《深度学习:算法到实战》课程

登录查看更多
28

相关内容

CoNLL(Conference on Computational Natural Language Learning)是一个顶级会议,每年由SIGNLL(ACL的自然语言学习特别兴趣小组)组织。官网链接:https://www.conll.org/
基于多头注意力胶囊网络的文本分类模型
专知会员服务
78+阅读 · 2020年5月24日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
214+阅读 · 2020年4月26日
注意力图神经网络的多标签文本分类
专知会员服务
112+阅读 · 2020年3月28日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
【干货】用BRET进行多标签文本分类(附代码)
专知会员服务
85+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
NLP - 基于 BERT 的中文命名实体识别(NER)
AINLP
466+阅读 · 2019年2月10日
NLP - 15 分钟搭建中文文本分类模型
AINLP
79+阅读 · 2019年1月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
CNN与RNN中文文本分类-基于TensorFlow 实现
七月在线实验室
13+阅读 · 2018年10月30日
开源|基于tensorflow使用CNN-RNN进行中文文本分类!
全球人工智能
11+阅读 · 2017年11月12日
深度学习实战(二)——基于Keras 的深度学习
乐享数据DataScientists
15+阅读 · 2017年7月13日
Arxiv
6+阅读 · 2019年4月4日
Arxiv
3+阅读 · 2018年12月19日
VIP会员
相关VIP内容
基于多头注意力胶囊网络的文本分类模型
专知会员服务
78+阅读 · 2020年5月24日
深度学习自然语言处理概述,216页ppt,Jindřich Helcl
专知会员服务
214+阅读 · 2020年4月26日
注意力图神经网络的多标签文本分类
专知会员服务
112+阅读 · 2020年3月28日
Transformer文本分类代码
专知会员服务
117+阅读 · 2020年2月3日
【干货】用BRET进行多标签文本分类(附代码)
专知会员服务
85+阅读 · 2019年12月27日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
NLP - 基于 BERT 的中文命名实体识别(NER)
AINLP
466+阅读 · 2019年2月10日
NLP - 15 分钟搭建中文文本分类模型
AINLP
79+阅读 · 2019年1月29日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
CNN与RNN中文文本分类-基于TensorFlow 实现
七月在线实验室
13+阅读 · 2018年10月30日
开源|基于tensorflow使用CNN-RNN进行中文文本分类!
全球人工智能
11+阅读 · 2017年11月12日
深度学习实战(二)——基于Keras 的深度学习
乐享数据DataScientists
15+阅读 · 2017年7月13日
Top
微信扫码咨询专知VIP会员