Applications based on biometric authentication have received a lot of interest in the last years due to the breathtaking results obtained using personal traits such as face or fingerprint. However, it is important not to forget that these biometric systems have to withstand different types of possible attacks. This chapter carries out an analysis of different Presentation Attack (PA) scenarios for on-line handwritten signature verification. The main contributions of this chapter are: i) an updated overview of representative methods for Presentation Attack Detection (PAD) in signature biometrics; ii) a description of the different levels of PAs existing in on-line signature verification regarding the amount of information available to the impostor, as well as the training, effort, and ability to perform the forgeries; and iii) an evaluation of the system performance in signature biometrics under different scenarios considering recent publicly available signature databases, DeepSignDB and SVC2021_EvalDB. This work is in line with recent efforts in the Common Criteria standardization community towards security evaluation of biometric systems.


翻译:在过去几年里,基于生物鉴别认证的应用由于使用脸部或指纹等个人特征取得的惊人结果而引起了很大兴趣,然而,重要的是不要忘记,这些生物鉴别系统必须承受不同类型的可能攻击;本章分析了用于在线手写签名核查的不同演示攻击(PA)情景;本章的主要贡献是:一) 最新概述在签字生物鉴别学方面具有代表性的演示攻击探测(PAD)方法;二) 说明在线签字核查中存在的有关假冒者可获得的信息数量以及进行伪造的培训、努力和能力的不同水平;三) 考虑到最近公开提供的签字数据库DeepSignDB和SVC2021_EvalDB, 在不同情况下对签字生物鉴别系统的性能进行评价,同时考虑到最近公开的签字数据库DeepSignDB和SVC2021_EvalDB,这项工作与共同标准标准化界最近为对生物鉴别系统进行的安全评价而作出的努力是一致的。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
专知会员服务
44+阅读 · 2020年12月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
93+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Recent advances in deep learning theory
Arxiv
50+阅读 · 2020年12月20日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员