Intelligent robots rely on object detection models to perceive the environment. Following advances in deep learning security it has been revealed that object detection models are vulnerable to adversarial attacks. However, prior research primarily focuses on attacking static images or offline videos. Therefore, it is still unclear if such attacks could jeopardize real-world robotic applications in dynamic environments. This paper bridges this gap by presenting the first real-time online attack against object detection models. We devise three attacks that fabricate bounding boxes for nonexistent objects at desired locations. The attacks achieve a success rate of about 90\% within about 20 iterations. The demo video is available at https://youtu.be/zJZ1aNlXsMU.
翻译:实时对抗检测:攻击物体检测
智能机器人依赖物体检测模型来感知环境。随着深度学习安全方面的进展,揭示了物体检测模型容易受到对抗性攻击的问题。然而,先前的研究主要集中在攻击静态图像或离线视频方面。因此仍不清楚这种攻击是否会危及动态环境下实际的机器人应用。本文通过呈现对物体检测模型的首次实时在线攻击来填补这一空白。我们设计了三种攻击,可以在所需位置制造不存在的对象的边界框。攻击在约20次迭代中实现了约90%的成功率。演示视频可在https://youtu.be/zJZ1aNlXsMU获得。