Dialogue systems have attracted more and more attention. Recent advances on dialogue systems are overwhelmingly contributed by deep learning techniques, which have been employed to enhance a wide range of big data applications such as computer vision, natural language processing, and recommender systems. For dialogue systems, deep learning can leverage a massive amount of data to learn meaningful feature representations and response generation strategies, while requiring a minimum amount of hand-crafting. In this article, we give an overview to these recent advances on dialogue systems from various perspectives and discuss some possible research directions. In particular, we generally divide existing dialogue systems into task-oriented and non-task-oriented models, then detail how deep learning techniques help them with representative algorithms and finally discuss some appealing research directions that can bring the dialogue system research into a new frontier.
翻译:对话系统最近的进展受到越来越多的关注。对话系统方面的最新进展绝大多数是由深层次学习技术促成的,这些技术被用来加强计算机视觉、自然语言处理和建议系统等广泛的大数据应用。对于对话系统来说,深层次学习能够利用大量的数据来学习有意义的地貌表现和反应生成战略,同时需要最低限度的手工制作。在文章中,我们从不同角度概述对话系统的最新进展,并讨论一些可能的研究方向。特别是,我们一般将现有对话系统分为面向任务和非任务模式,然后详细说明深层次学习技术如何帮助他们掌握有代表性的算法,最后讨论一些有吸引力的研究方向,将对话系统的研究推向新的前沿。