A biometric recognition system can operate in two distinct modes, identification or verification. In the first mode, the system recognizes an individual by searching the enrolled templates of all the users for a match. In the second mode, the system validates a claimed identity by comparing the fresh template with the enrolled template for this identity. Both the experimentally determined false match rate and false non-match rate through recognition threshold adjustment define the recognition accuracy, and hence the security of the system. The biometric transformation schemes usually produce binary templates that are better handled by cryptographic schemes. One of the requirements for these transformation schemes is their irreversibility. In this work, we rely on probabilistic modelling to quantify the security strength of binary templates. We investigate the influence of template size, database size and threshold on the probability of having a near-collision, and we highlight two attacks on biometric systems. We discuss the choice of parameters through the generic presented attacks.
翻译:生物识别系统可以运行在两种不同的模式下,即识别或验证。在第一种模式下,系统通过搜索所有用户的注册模板来识别个体。在第二种模式下,系统通过将新鲜模板与已注册模板进行比较来验证所声称的身份。通过识别阈值调整实验确定的假匹配率和假不匹配率,定义了识别准确性,因此也定义了系统的安全性。生物识别转换方案通常会产生更好地处理的二进制模板,这些模板更适合于加密方案。这些转换方案的要求之一是它们的不可逆性。在这项工作中,我们依赖于概率建模来量化二进制模板的安全强度。我们研究了模板大小、数据库大小和阈值对近似碰撞概率的影响,并且我们强调了生物识别系统中的两种攻击。我们通过通用的攻击讨论了参数的选择。