Object detection is a critical component of various security-sensitive applications, such as autonomous driving and video surveillance. However, existing deep learning-based object detectors are vulnerable to adversarial attacks, which poses a significant challenge to their reliability and safety. Through experiments, we found that existing works on improving the adversarial robustness of object detectors have given a false sense of security. We argue that using adversarially pre-trained backbone networks is essential for enhancing the adversarial robustness of object detectors. We propose a simple yet effective recipe for fast adversarial fine-tuning on object detectors with adversarially pre-trained backbones. Without any modifications to the structure of object detectors, our recipe achieved significantly better adversarial robustness than previous works. Moreover, we explore the potential of different modern object detectors to improve adversarial robustness using our recipe and demonstrate several interesting findings. Our empirical results set a new milestone and deepen the understanding of adversarially robust object detection. Code and trained checkpoints will be publicly available.
翻译:暂无翻译