An implicit Euler finite-volume scheme for a nonlocal cross-diffusion system on the one-dimensional torus, arising in population dynamics, is proposed and analyzed. The kernels are assumed to be in detailed balance and satisfy a weak cross-diffusion condition. The latter condition allows for negative off-diagonal coefficients and for kernels defined by an indicator function. The scheme preserves the nonnegativity of the densities, conservation of mass, and production of the Boltzmann and Rao entropies. The key idea is to ``translate'' the entropy calculations for the continuous equations to the finite-volume scheme, in particular to design discretizations of the mobilities, which guarantee a discrete chain rule even in the presence of nonlocal terms. Based on this idea, the existence of finite-volume solutions and the convergence of the scheme are proven. As a by-product, we deduce the existence of weak solutions to the continuous cross-diffusion system. Finally, we present some numerical experiments illustrating the behavior of the solutions to the nonlocal and associated local models.
翻译:提议并分析在人口动态中产生的单维横体非局部交叉扩散系统的隐含能量量计划; 假设内核详细平衡,满足薄弱的交叉扩散条件; 后一种条件允许负离子系数和指标函数定义的内核。 这个计划保留了Boltzmann和Rao entropies的密度、质量的保存和产值的不增强性。 关键的想法是“ 将“ 递转” 的连续方程式计算成有限量计划, 特别是设计调动的离散性, 保证即使在非本地条件下也有一个离散的链规则。 基于这个想法, 有限量解决方案的存在和该计划的趋同性得到了证明。 作为副产品, 我们推断出持续交叉融合系统存在薄弱的解决方案。 最后, 我们提出一些数字实验,说明非本地和关联的本地模型的解决方案行为。