项目名称: 虫媒传染病与气象因子滞后非线性关系的统计模型研究

项目编号: No.81502894

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 医药、卫生

项目作者: 赵星

作者单位: 四川大学

项目金额: 18万元

中文摘要: 虫媒传染病是我国和全球重要公共卫生问题之一,气象变化对其影响具有滞后性与非线性两个重要特点。近年研究显示气象因子和虫媒传染病的定量关系仍不确切,各项研究间结论存在矛盾。造成该问题的重要原因之一是现有统计方法无法处理时空变异、高维交互和多维参数。.本项目根据气象因子与虫媒传染病关系的特点,发展对“暴露维”与“滞后维”同时进行统计学建模的方法。拟研究如下新模型:①针对重要的生物学参数,提出具有直接解释性的新参数化模型并给出参数估计方法;②单指标模型建模跨越“暴露维”与“滞后维”相互嵌套的复杂高维交互效应,拟采用带惩罚回归样条进行模型推断;③将分布滞后非线性模型拓展到空间变系数的情形并给出层次贝叶斯建模方法与推断技术。这些新方法可处理滞后非线性建模中的时空变异、高维交互和多维参数等问题。本研究对明确气象因子影响虫媒传染病发生和传播的流行病学机制具有重要科学意义,也对完善防控措施具有实用价值。

中文关键词: 虫媒传染病;气象因子;非线性;滞后性;统计模型

英文摘要: The increasingly variable climate may change the dynamics and distribution of vector-borne diseases, which are threatening the health of human beings. Biologically speaking, climate is fundamentally associated with the vector-borne disease incidence through its effects on both the mosquito vector and the development of the pathogen inside the mosquito vector. Two aspects of the meteorological effects require special attention, the lag and non-linear characteristics. However, researchers still have a poor understanding of the mechanistic link between climate and vector-borne disease risk. Many studies were conducted to explore the link with inconsistent findings reported, and the nature and extent of the link remains highly controversial. Existing inconsistent findings may be due to the invalid statistical assumptions, which ignore the spatial-temporal variations, high-dimension interactions and multi-parameters..The aim of this study is to better understand the lagged and nonlinear epidemiological association between meteorological factors and vector-borne diseases. Specifically, this project will study the following three problems. First, a model with a new parameterization form will be proposed to directly model the interested biological parameters, and its estimation method will be developed. The parameters are highly crucial for the understanding of epidemiological mechanism. Second, the single-index-model will be applied to model the complex high-dimension interactions across “lag dimension” and “exposure dimension”, and the penalized regression spline will be used for the inference procedure. The proposed model can reveal the micro interactions between multiple exposures over the lagged time. Third, the spatial varying coefficient strategy will be adapted to distributed lag nonlinear model, leading to present the spatial variation for the lag nonlinear pattern..The proposed statistical methods can facilitate the understanding of the mechanistic link between climate and vector-borne disease, thereby helping the vector-borne disease control.

英文关键词: vector-borne diseases;climate;nonlinear effect;lag effect;statistical model

成为VIP会员查看完整内容
1

相关内容

【2022开放书】因果推理统计工具,377页pdf
专知会员服务
108+阅读 · 2022年4月20日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
32+阅读 · 2021年7月1日
CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型
专知会员服务
62+阅读 · 2021年4月11日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
AAAI 2022 | 条件局部图卷积网络用以气象预测
PaperWeekly
0+阅读 · 2022年3月5日
【党史学习】江泽民重要论述(六)
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【党史学习】江泽民重要论述(五)
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【党史学习】江泽民重要论述(四)
中国图象图形学学会CSIG
0+阅读 · 2021年11月12日
【党史学习】江泽民重要论述(二)
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
用深度学习揭示数据的因果关系
专知
28+阅读 · 2019年5月18日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月12日
Arxiv
32+阅读 · 2021年3月8日
Arxiv
15+阅读 · 2019年4月4日
Arxiv
11+阅读 · 2018年5月21日
小贴士
相关主题
相关VIP内容
【2022开放书】因果推理统计工具,377页pdf
专知会员服务
108+阅读 · 2022年4月20日
专知会员服务
117+阅读 · 2021年10月6日
专知会员服务
32+阅读 · 2021年7月1日
CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型
专知会员服务
62+阅读 · 2021年4月11日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
专知会员服务
144+阅读 · 2021年2月3日
【经典书】机器学习高斯过程,266页pdf
专知会员服务
195+阅读 · 2020年5月2日
相关资讯
AAAI 2022 | 条件局部图卷积网络用以气象预测
PaperWeekly
0+阅读 · 2022年3月5日
【党史学习】江泽民重要论述(六)
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【党史学习】江泽民重要论述(五)
中国图象图形学学会CSIG
0+阅读 · 2021年11月15日
【党史学习】江泽民重要论述(四)
中国图象图形学学会CSIG
0+阅读 · 2021年11月12日
【党史学习】江泽民重要论述(二)
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
用深度学习揭示数据的因果关系
专知
28+阅读 · 2019年5月18日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
回归预测&时间序列预测
GBASE数据工程部数据团队
43+阅读 · 2017年5月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
5+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员