项目名称: 非线性动力系统的最简正规形及其相关问题的研究
项目编号: No.11471027
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 任志华
作者单位: 北京工业大学
项目金额: 60万元
中文摘要: 正规形理论是简化动力系统的重要工具和处理分岔问题时的必要手段,研究动力系统在平衡点附近的局部线性化是分析系统局部动力学行为广泛采用的方法,非线性系统的线性化是正规形研究领域中的重要研究课题之一。本项目充分利用经典的正规形理论、Banach不动点定理,结合Hartman-Grobman拓扑线性化定理的泛函分析证明方法,来探讨动力系统的线性化、正规形及一些相关问题。具体包括:探讨R^n中微分同胚在双曲不动点附近在不附加非共振条件下的Holder连续线性化和光滑线性化问题;进一步研究一些映射在其非双曲不动点附近的多项式正规形和最简正规形,在此基础上利用模自由正规形的思想来研究系统在共轭等价意义下的光滑分类和形式分类问题。
中文关键词: 动力系统;正规形;线性化;共轭等价
英文摘要: Normal form theory is an imporatant method to simply dynamical systems and essential for bifurcation theory. Linearization of nonlinear dynamical systems is an important topic in normal form theory. In our project, by using classical normal form theory, Banach fixed point theorem and functional analysis method in the proof on Hartman-Grobman topologically linearization theorem, we study linearization of dynamical systems, their normal forms and their corresponding classifications. For some diffeomorphisms on R^n, we expect to discuss Holder continuous and smooth linearization near their hyperbolic fixed points without nonresonant conditions; Secondly, the polynomial normal forms and the simplest normal forms for some maps near their nonhyperbolic fixed points are to be considered; Furthermore, the smooth classification and formal classification under conjugating equvalence are studied by using moduli-free normal form method.
英文关键词: dynamical system;normal form;linearization;conjugating equivalence