实际系统往往由大量类型各异、彼此交互的组件构成.当前大多数工作将其建模为同质信息网络,并未对网络中不同类型的对象及链接加以区分.近年来,越来越多的研究者将这些互联数据建模为由不同类型节点和边构成的异质信息网络,并利用网络中全面的结构信息和丰富的语义信息进行更精准的知识发现.随着大数据时代的到来,异质信息网络自然融合异构多源数据的优势使其成为解决大数据多样性的重要途径.因此,异质信息网络分析迅速成为数据挖掘研究和产业应用的热点.本文对异质信息网络分析与应用进行了全面综述. 除介绍异质信息网络领域的基本概念外,重点聚焦基于元路径的数据挖掘方法、异质信息网络的表示学习技术和实际应用三个方面的最新研究进展,并对未来的发展方向进行了展望.