项目名称: 高维时间序列的降维与建模

项目编号: No.11501462

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 常晋源

作者单位: 西南财经大学

项目金额: 18万元

中文摘要: 随着科学技术的快速发展,高维时间序列数据随处可见,这给广大的统计工作者带来了前所未有的挑战与机遇。众所周知,直接使用已有参数模型对即便是维数不是很大的多维时间序列数据进行建模时通常都会遇到过度参数化和模型不可识别这两大问题。为了避免在分析高维时间序列数据时出现这样的问题,我们在这个项目中提出两种对高维时间序列进行降维的方法。通过这两种方法,我们可以将一个高维时间序列转化为多个低维时间序列,然后运用已有的模型对这些低维时间序列进行建模。这样的策略可以显著地缓解过度参数化和模型不可识别的问题。这为分析高维时间序列提出了一种有效而可行的方法。在研究所提方法的理论性质时,我们需要一些新的理论工具,这使得建立相应的理论结果非常具有挑战性。同时这个项目的完成将扩展当前我们对统计推断的理解和视角,并将在概念和方法上提出革新。

中文关键词: 高维时间序列;降维;高维数据分析;时间序列建模;时间序列预测

英文摘要: Lately, high-dimensional time series data have been encountered ubiquitously in a variety of practices that brings both opportunities and challenges to statisticians. It is well known that modeling a time series data even with moderate dimensionality via special parametric models will generate two issues: overparametrization and non-identification. To alleviate such issues in analyzing high-dimensional time series, we propose two approaches in the proposal to do dimension reduction for high-dimensional time series with reasonably unconstraint structure assumptions which will transfer the target time series to some low-dimensional time series. Then the conventional models in time series analysis can be applied to model such low-dimensional time series directly. Such strategy can significantly alleviate the issues of overparametrization and non-identification mentioned above and will pave an efficient road to analyze high-dimensional time series data. The theoretical studies for the new methods need some new technical tools that makes the construction of theoretical properties be challenging. The novelty of the proposal will extend the insights of modern statistical inference and brings innovations both conceptually and methodologically.

英文关键词: High dimensional time series;Dimension reduction;High dimensional data analysis;Time series modelling;Forecasting of time series

成为VIP会员查看完整内容
23

相关内容

【ICLR2022】图神经网络复杂时间序列建模
专知会员服务
89+阅读 · 2022年4月15日
时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
南大《时间序列分析 (Time Series Analysis)》课程,推荐!
专知会员服务
153+阅读 · 2022年3月31日
专知会员服务
52+阅读 · 2021年8月29日
【哥伦比亚大学博士论文】深度概率图建模147页pdf
专知会员服务
88+阅读 · 2021年4月27日
CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型
专知会员服务
62+阅读 · 2021年4月11日
【元图(Meta-Graph):元学习小样本连接预测】
专知会员服务
64+阅读 · 2020年5月31日
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
NeurIPS 2021 | CyGen:基于概率论理论的生成式建模新模式
微软研究院AI头条
0+阅读 · 2021年11月26日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
t-SNE:最好的降维方法之一
人工智能前沿讲习班
26+阅读 · 2019年2月24日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
R语言之数据分析高级方法「时间序列」
R语言中文社区
17+阅读 · 2018年4月24日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
13+阅读 · 2008年12月31日
Tikhonov Regularization of Circle-Valued Signals
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
A Survey on Deep Hashing Methods
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
25+阅读 · 2018年1月24日
小贴士
相关VIP内容
【ICLR2022】图神经网络复杂时间序列建模
专知会员服务
89+阅读 · 2022年4月15日
时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
南大《时间序列分析 (Time Series Analysis)》课程,推荐!
专知会员服务
153+阅读 · 2022年3月31日
专知会员服务
52+阅读 · 2021年8月29日
【哥伦比亚大学博士论文】深度概率图建模147页pdf
专知会员服务
88+阅读 · 2021年4月27日
CVPR 2021 | 时间序列疾病预测的因果隐马尔可夫模型
专知会员服务
62+阅读 · 2021年4月11日
【元图(Meta-Graph):元学习小样本连接预测】
专知会员服务
64+阅读 · 2020年5月31日
相关资讯
再谈变分自编码器(VAE):估计样本概率密度
PaperWeekly
3+阅读 · 2021年12月23日
NeurIPS 2021 | CyGen:基于概率论理论的生成式建模新模式
微软研究院AI头条
0+阅读 · 2021年11月26日
一文读懂线性回归、岭回归和Lasso回归
CSDN
34+阅读 · 2019年10月13日
t-SNE:最好的降维方法之一
人工智能前沿讲习班
26+阅读 · 2019年2月24日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
R语言之数据分析高级方法「时间序列」
R语言中文社区
17+阅读 · 2018年4月24日
贝叶斯机器学习前沿进展
架构文摘
13+阅读 · 2018年2月11日
相关基金
国家自然科学基金
3+阅读 · 2015年12月31日
国家自然科学基金
10+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
7+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
13+阅读 · 2008年12月31日
相关论文
Tikhonov Regularization of Circle-Valued Signals
Arxiv
1+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月20日
A Survey on Deep Hashing Methods
Arxiv
1+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月14日
Arxiv
23+阅读 · 2022年2月4日
Arxiv
19+阅读 · 2018年6月27日
Arxiv
11+阅读 · 2018年5月21日
Arxiv
25+阅读 · 2018年1月24日
微信扫码咨询专知VIP会员