摘要:近年来,在开发更准确、高效的医学和自然图像分割机器学习算法方面取得了重大进展。在这篇综述文章中,我们强调了机器学习算法在医学成像领域有效和准确分割中的重要作用。我们特别关注几个关键的研究涉及到应用机器学习方法在生物医学图像分割。我们回顾了经典的机器学习算法,如马尔可夫随机场、k均值聚类、随机森林等。尽管与深度学习技术相比,这种经典的学习模型往往精度较低,但它们通常更具有样本效率,结构也更简单。我们还回顾了不同的深度学习结构,如人工神经网络(ANNs)、卷积神经网络(CNNs)和递归神经网络(RNNs),并给出了这些学习模型在过去三年中获得的分割结果。我们强调每种机器学习范式的成功和局限性。此外,我们还讨论了与不同机器学习模型训练相关的几个挑战,并提出了一些解决这些挑战的启发方法。