概率图建模(PGM)提供了一个框架,以设计一个可解释的生成过程的数据和表达不确定性的未知数。这使得PGM对于理解数据背后的现象和决策非常有用。在可解释推理是关键的领域内,PGM取得了巨大的成功,例如市场营销、医学、神经科学和社会科学。然而,PGM往往缺乏灵活性,这阻碍了它在建模大规模高维复杂数据和执行需要灵活性的任务(例如在视觉和语言应用程序中)时的使用。

深度学习(DL)是另一个从数据中建模和学习的框架,近年来取得了巨大的成功。DL功能强大,具有很大的灵活性,但缺乏PGM的可解释性和校准性。

本文研究了深度概率图建模(DPGM)。DPGM通过利用DL使PGM更加灵活。DPGM带来了从数据中学习的新方法,这些方法展示了PGM和DL的优点。

我们在PGM中使用DL来构建具有可解释潜在结构的灵活模型。我们提出一系列模型扩展指数族主成分分析(EF-PCA),使用神经网络提高预测性能,同时加强潜在因素的可解释性。我们引入的另一个模型类支持在建模顺序数据时考虑长期依赖关系,这在使用纯DL或PGM方法时是一个挑战。该序列数据模型类已成功应用于语言建模、情感分析的无监督文档表示学习、会话建模和医院再入院预测的患者表示学习。最后,DPGM成功地解决了概率主题模型的几个突出问题。

在PGM中利用DL也带来了学习复杂数据的新算法。例如,我们开发了熵正则化对抗学习,这是一种与PGM中使用的传统最大似然方法不同的学习范式。从DL的角度来看,熵正则化对抗学习为生成式对抗网络长期存在的模式崩溃问题提供了一种解决方案。

成为VIP会员查看完整内容
0
29

相关内容

机器学习的一个分支,它基于试图使用包含复杂结构或由多重非线性变换构成的多个处理层对数据进行高层抽象的一系列算法。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

向量嵌入模型是现代机器学习知识表示和推理方法的基石。这些方法旨在通过在低维向量空间中学习概念和其他领域对象的表示,将语义问题转化为几何问题。本着这种精神,这项工作提倡基于密度和区域的表示学习。将领域元素作为几何对象嵌入到单点之外,使我们能够自然地表示广度和一词多义,进行不对称比较,回答复杂的查询,并在标记数据稀缺时提供强烈的归纳偏见。我们提出了一个使用高斯密度的词表示模型,实现了概念之间的不对称隐含判断,以及一个基于轴对齐超矩形表示(盒)格的加权传递关系和多元离散数据的概率模型。我们将探讨这些嵌入方法在不同的稀疏性、边缘权值、相关性和独立结构的适用性,以及表示的扩展和不同的优化策略。我们从理论上研究了盒格的表示能力,并提出了扩展模型来解决在建模困难的分布和图方面的不足。

成为VIP会员查看完整内容
0
23

自2012年卷积神经网络(CNNs)在ImageNet任务中取得最佳性能以来,深度学习已成为解决计算机视觉、自然语言处理、语音识别和生物信息学任务的首选方法。然而,尽管表现令人印象深刻,神经网络往往会做出过于置信的预测。为了构建更安全的机器学习系统,有必要对模型预测中的不确定性进行健壮的、可解释的和可处理的估计。这对于错误成本高的应用至关重要,例如自动驾驶汽车控制、高风险的自动熟练程度评估以及医疗、金融和法律领域。本文的第一部分详细讨论了基于集成和单模型的不确定性估计方法,并提出了一种新的不确定性估计模型——先验网络。先前的网络能够使用单一的确定性神经网络来模拟模型集成,它允许在与基于集成的方法相同的概率框架内确定不确定性的来源,但具有单一模型方法计算简单和易于训练。因此,先验网络结合了集成方法和单模型方法的优点来估计不确定性。在这篇论文中,先前的网络是在一个范围分类数据集上进行评估的,在检测分布外输入的任务上,它们的表现优于基线方法,如蒙特卡罗Dropout。本文的第二部分将深度学习和不确定性估计方法应用于非母语口语能力的自动评估。具体来说,基于深度学习的评分者和口语反应相关性评估系统是使用剑桥英语语言评估提供的BULATS和LinguaSkill考试数据构建的。本文前半部分讨论和评估的不确定性估计基线方法,随后应用于这些模型,并在拒绝由人工考官评分的预测和发现错误分类的任务上进行评估。

https://www.repository.cam.ac.uk/handle/1810/298857

成为VIP会员查看完整内容
0
22

新型深度学习模型的研究

深度学习是近年来机器学习领域中的热点研究领域。深度森林模型是一 种新型深度学习模型,扩展了深度学习的内涵和适用范围。本文开展深度森 林方面的相关研究工作,主要取得了以下创新结果:

  • 1.基于森林的多层分布表示。多层分布式表示学习被认为是神经网络独有的 特性,本文提出了基于森林的多层模型 mGBDT,第一次显示出多层分布 式表示通过森林模型也能进行。在表格数据和混合数据等各类建模任务 上,mGBDT 展示了其兼具表示学习和离散数据建模的能力。

  • 2.基于森林的自编码器模型。自编码器被认为是只能通过神经网络实现的独 有模型,本文工作提出了第一个基于森林的自编码器 eForest,在多类数 据上均取得了优异的性能体现。与此同时,还利用 Intel 众核芯片 KNL, 通过多进程,向量化和编译器优化等技术,获得了近线性加速比,为大规 模应用提供了基础。

    1. 基于自编码器的毒化训练。毒化训练指对深度学习模型的训练过程进行攻 击,使得训练好的模型存在攻击者希望的缺陷。本文主要讨论通过设计新 型自编码器,通过对训练样本进行对抗表示学习,以实现毒化训练。本文 同时将算法扩展到了联邦学习框架下,验证了该算法在具备数据隐私保护 的分布式场景下依旧有效。
    1. 多示例多标记的深度模型。多标记多示例 (MIML) 学习是面向多义性对象 的新型机器学习框架,本文设计了第一个 MIML 深度模型,可自动从原 始数据中学习出多示例的样本表示。与此同时,通过预训练 DeepMIML 模型同多标记深度森林模型相结合,在一系列任务中取得了优异的性能。

成为VIP会员查看完整内容
0
41

赋予机器以感知三维世界的能力,就像我们人类一样,是人工智能领域一个基本且长期存在的主题。给定不同类型的视觉输入,如二维/三维传感器获取的图像或点云,一个重要的目标是理解三维环境的几何结构和语义。传统的方法通常利用手工特征来估计物体或场景的形状和语义。然而,他们很难推广到新的对象和场景,并努力克服关键问题造成的视觉遮挡。相比之下,我们的目标是理解场景和其中的对象,通过学习一般和鲁棒的表示使用深度神经网络,训练在大规模的真实世界3D数据。为了实现这些目标,本文从单视图或多视图的物体级三维形状估计到场景级语义理解三个方面做出了核心贡献。

在第3章中,我们从一张图像开始估计一个物体的完整三维形状。利用几何细节恢复密集的三维图形,提出一种强大的编码器解码器结构,并结合对抗式学习,从大型三维对象库中学习可行的几何先验。在第4章中,我们建立了一个更通用的框架来从任意数量的图像中精确地估计物体的三维形状。通过引入一种新的基于注意力的聚合模块和两阶段的训练算法,我们的框架能够集成可变数量的输入视图,预测稳健且一致的物体三维形状。在第5章中,我们将我们的研究扩展到三维场景,这通常是一个复杂的个体对象的集合。现实世界的3D场景,例如点云,通常是杂乱的,无结构的,闭塞的和不完整的。在借鉴以往基于点的网络工作的基础上,我们引入了一种全新的端到端管道来同时识别、检测和分割三维点云中的所有对象。

总的来说,本文开发了一系列新颖的数据驱动算法,让机器感知我们真实的3D环境,可以说是在推动人工智能和机器理解的边界。

https://ora.ox.ac.uk/objects/uuid:5f9cd30d-0ee7-412d-ba49-44f5fd76bf28

成为VIP会员查看完整内容
0
30

【导读】牛津大学的博士生Oana-Maria Camburu撰写了毕业论文《解释神经网络 (Explaining Deep Neural Networks)》,系统性介绍了深度神经网络可解释性方面的工作,值得关注。

作者介绍:

Oana-Maria Camburu,来自罗马尼亚,目前是牛津大学的博士生,主修机器学习、人工智能等方向。

Explaining Deep Neural Networks

深度神经网络在计算机视觉、自然语言处理和语音识别等不同领域取得了革命性的成功,因此越来越受欢迎。然而,这些模型的决策过程通常是无法向用户解释的。在各种领域,如医疗保健、金融或法律,了解人工智能系统所做决策背后的原因至关重要。因此,最近研究了几个解释神经模型的方向。

在这篇论文中,我研究了解释深层神经网络的两个主要方向。第一个方向由基于特征的事后解释方法组成,也就是说,这些方法旨在解释一个已经训练过的固定模型(事后解释),并提供输入特征方面的解释,例如文本标记和图像的超级像素(基于特征的)。第二个方向由生成自然语言解释的自解释神经模型组成,也就是说,模型有一个内置模块,为模型的预测生成解释。在这些方面的贡献如下:

  • 首先,我揭示了仅使用输入特征来解释即使是微不足道的模型也存在一定的困难。我表明,尽管有明显的隐含假设,即解释方法应该寻找一种特定的基于真实值特征的解释,但对于预测通常有不止一种这样的解释。我还展示了两类流行的解释方法,它们针对的是不同类型的事实基础解释,但没有明确地提及它。此外,我还指出,有时这两种解释都不足以提供一个实例上决策过程的完整视图。

  • 其次,我还介绍了一个框架,用于自动验证基于特征的事后解释方法对模型的决策过程的准确性。这个框架依赖于一种特定类型的模型的使用,这种模型有望提供对其决策过程的洞察。我分析了这种方法的潜在局限性,并介绍了减轻这些局限性的方法。引入的验证框架是通用的,可以在不同的任务和域上实例化,以提供现成的完整性测试,这些测试可用于测试基于特性的后特殊解释方法。我在一个情绪分析任务上实例化了这个框架,并提供了完备性测试s1,在此基础上我展示了三种流行的解释方法的性能。

  • 第三,为了探索为预测生成自然语言解释的自解释神经模型的发展方向,我在有影响力的斯坦福自然语言推断(SNLI)数据集之上收集了一个巨大的数据集,数据集约为570K人类编写的自然语言解释。我把这个解释扩充数据集称为e-SNLI。我做了一系列的实验来研究神经模型在测试时产生正确的自然语言解释的能力,以及在训练时提供自然语言解释的好处。

  • 第四,我指出,目前那些为自己的预测生成自然语言解释的自解释模型,可能会产生不一致的解释,比如“图像中有一只狗。”以及“同一幅图片中没有狗”。不一致的解释要么表明解释没有忠实地描述模型的决策过程,要么表明模型学习了一个有缺陷的决策过程。我将介绍一个简单而有效的对抗性框架,用于在生成不一致的自然语言解释时检查模型的完整性。此外,作为框架的一部分,我解决了使用精确目标序列的对抗性攻击的问题,这是一个以前在序列到序列攻击中没有解决的场景,它对于自然语言处理中的其他任务很有用。我将这个框架应用到e-SNLI上的一个最新的神经模型上,并表明这个模型会产生大量的不一致性。

这项工作为获得更稳健的神经模型以及对预测的可靠解释铺平了道路。

地址: https://arxiv.org/abs/2010.01496

成为VIP会员查看完整内容
0
131

数据科学是设计从大量数据中提取知识的算法和管道。时间序列分析是数据科学的一个领域,它感兴趣的是分析按时间顺序排列的数值序列。时间序列特别有趣,因为它让我们能够可视化和理解一个过程在一段时间内的演变。他们的分析可以揭示数据之间的趋势、关系和相似性。存在大量以时间序列形式包含数据的领域:医疗保健(心电图、血糖等)、活动识别、遥感、金融(股票市场价格)、工业(传感器)等。

在数据挖掘中,分类是一项受监督的任务,它涉及从组织到类中的带标签的数据中学习模型,以便预测新实例的正确标签。时间序列分类包括构造用于自动标注时间序列数据的算法。例如,使用健康患者或心脏病患者的一组标记的心电图,目标是训练一个模型,能够预测新的心电图是否包含病理。时间序列数据的时序方面需要算法的发展,这些算法能够利用这种时间特性,从而使传统表格数据现有的现成机器学习模型在解决底层任务时处于次优状态。

在这种背景下,近年来,深度学习已经成为解决监督分类任务的最有效方法之一,特别是在计算机视觉领域。本论文的主要目的是研究和发展专门为分类时间序列数据而构建的深度神经网络。因此,我们进行了第一次大规模的实验研究,这使我们能够比较现有的深度学习方法,并将它们与其他基于非深度学习的先进方法进行比较。随后,我们在这一领域做出了大量的贡献,特别是在迁移学习、数据增强、集成和对抗性攻击的背景下。最后,我们还提出了一种新的架构,基于著名的Inception 网络(谷歌),它是目前最有效的架构之一。

我们在包含超过100个数据集的基准测试上进行的实验使我们能够验证我们的贡献的性能。最后,我们还展示了深度学习方法在外科数据科学领域的相关性,我们提出了一种可解释的方法,以便从运动学多变量时间序列数据评估外科技能。

深度学习序列分类概述

在过去的二十年中,TSC被认为是数据挖掘中最具挑战性的问题之一(Yang and Wu, 2006; Esling and Agon, 2012)。随着时间数据可用性的增加(Silva et al.,2018),自2015年以来已有数百种TSC算法被提出(Bagnall et al.,2017)。由于时间序列数据具有自然的时间顺序,几乎在每一个需要某种人类认知过程的任务中都存在时间序列数据(Langkvist, Karlsson, and Loutfi, 2014)。事实上,任何使用考虑到排序概念的已注册数据的分类问题都可以被视为TSC问题(Cristian Borges Gamboa, 2017)。时间序列在许多实际应用中都遇到过,包括医疗保健(Gogolou等,2018)和人类活动识别(Wang et al.,2018;到声学场景分类(Nwe, Dat, and Ma, 2017)和网络安全(Susto, Cenedese, and Terzi, 2018)。此外,UCR/UEA档案中数据集类型的多样性(Dau等,2019;Bagnall et al,2017)(最大的时间序列数据集储存库)展示了TSC问题的不同应用。

成为VIP会员查看完整内容
0
69

在生态学、流行病学和天文学等许多应用领域中,仿真模型被用来研究发生在自然界中的复杂现象。通常,这些模型的似然函数的分析形式要么是不可用的,要么是太昂贵而无法评估,从而使统计推断复杂化。无概率推理(LFI)方法,如近似贝叶斯计算(ABC),基于用模型的正演模拟代替难以处理的似然评估,已成为对仿真模型进行推理的一种流行方法。然而,当前的LFI方法在计算和统计方面存在一些挑战。特别是,标准的ABC算法需要大量的仿真,这使得它们在前向仿真代价昂贵的情况下不可行。

本文讨论了计算代价高的模型的无概率推理。主要贡献是基于高斯过程代理模型的LFI一致性框架。GP模型允许对仿真模型输出的平滑假设进行编码,以减少所需的仿真量。此外,由于模拟预算有限,所产生的基于模型的后验逼近的不确定性可以被量化。我们提出贝叶斯实验设计策略来选择评估地点,以使计算成本最小化。顺序设计(每次选择一个模拟)和批处理策略(允许利用并行计算)都是推导出来的。除了LFI场景外,本文提出的方法也适用于可能性可以评估但代价昂贵的情况。

本质上,所提出的框架可以被视为概率数值方法的LFI对等物,如贝叶斯优化,用于优化昂贵的目标函数,贝叶斯求积,用于计算昂贵函数的积分。我们通过大量的经验模拟证明了所提出的LFI方法的优点。文中还对所提算法进行了理论分析,并讨论了它们与其他GP代理方法的关系。

https://aaltodoc.aalto.fi/handle/123456789/46310

成为VIP会员查看完整内容
0
17

当前的深度学习研究以基准评价为主。如果一种方法在专门的测试集上有良好的经验表现,那么它就被认为是有利的。这种心态无缝地反映在连续学习的重现领域,在这里研究的是持续到达的基准数据集。核心挑战是如何保护之前获得的表示,以免由于迭代参数更新而出现灾难性地遗忘的情况。然而,各个方法的比较是与现实应用程序隔离的,通常通过监视累积的测试集性能来判断。封闭世界的假设仍然占主导地位。假设在部署过程中,一个模型保证会遇到来自与用于训练的相同分布的数据。这带来了一个巨大的挑战,因为众所周知,神经网络会对未知的实例提供过于自信的错误预测,并在数据损坏的情况下崩溃。在这个工作我们认为值得注意的教训来自开放数据集识别,识别的统计偏差以外的数据观测数据集,和相邻的主动学习领域,数据增量查询等预期的性能收益最大化,这些常常在深度学习的时代被忽略。基于这些遗忘的教训,我们提出了一个统一的观点,以搭建持续学习,主动学习和开放集识别在深度神经网络的桥梁。我们的结果表明,这不仅有利于每个个体范式,而且突出了在一个共同框架中的自然协同作用。我们从经验上证明了在减轻灾难性遗忘、主动学习中查询数据、选择任务顺序等方面的改进,同时在以前提出的方法失败的地方展示了强大的开放世界应用。****

成为VIP会员查看完整内容
0
49

在过去的20年里,基因组学、神经科学、经济学和互联网服务等许多领域产生了越来越多的大数据集,这些数据集有高维、大样本,或者两者兼之。这为我们从数据中检索和推断有价值的信息提供了前所未有的机会。同时,也对统计方法和计算算法提出了新的挑战。一方面,我们希望建立一个合理的模型来捕获所需的结构,并提高统计估计和推断的质量。另一方面,面对越来越大的数据集,计算可能成为一个巨大的障碍,以得出有意义的结论。这篇论文站在两个主题的交叉点,提出了统计方法来捕获所需的数据结构,并寻求可扩展的方法来优化计算非常大的数据集。我们提出了一种可扩展的灵活框架,用于利用lasso/elastic-net解决大规模稀疏回归问题; 提出了一种可伸缩的框架,用于在存在多个相关响应和其他细微差别(如缺失值)的情况下解决稀疏缩减秩回归问题。分别在snpnet和multiSnpnet R包中以PLINK 2.0格式为基因组数据开发了优化的实现。这两种方法在超大和超高维的英国生物样本库研究中得到了验证,与传统的预测建模方法相比有了显著的改进。此外,我们考虑了一类不同的高维问题,异质因果效应的估计。与监督学习的设置不同,这类问题的主要挑战在于,在历史数据中,我们从未观察到硬币的另一面,因此我们无法获得处理之间真正差异的基本真相。我们提出适应非参数统计学习方法,特别是梯度增强和多元自适应回归样条,以估计处理效果的预测器可用。实现被打包在一个R包causalLearning中。

成为VIP会员查看完整内容
0
56

本文是慕尼黑大学数学、信息学及统计学院的博士生Pankaj Gupta的博士学位论文,主要研究两个NLP任务:关系提取和主题建模。本文将神经网络和主题模型两种互补的学习范式结合在一个神经复合模型中,使我们能够通过主题模型在文档集合中共同学习主题结构,并通过语言模型在句子中共同学习单词关系。

慕尼黑大学自19世纪以来便是德国和欧洲最具声望大学之一,也是德国精英大学、U15大学联盟和欧洲研究型大学联盟成员,其社会科学、人文科学、物理,化学,生命科学,医学,数学等领域均在国际上享有盛名。本文是慕尼黑大学数学、信息学及统计学院的博士生Pankaj Gupta的博士学位论文。

自然语言处理(Natural language processing,NLP)涉及构建计算技术,允许计算机自动分析和有意义地表示人类语言。随着数字时代数据的指数增长,基于NLP的系统的出现使我们能够通过广泛的应用程序,如网络搜索引擎、语音助理等,轻松地访问相关信息。为了实现这一目标,几十年来的一项长期研究一直集中在NLP和机器学习交叉的技术上。

近年来,深度学习技术利用了人工神经网络(ANNs)的表现力,在广泛的NLP任务中取得了最先进的性能。深度神经网络(DNNs)可以从输入数据中自动提取复杂的特征,从而为手工特征工程提供了一种替代方法。除了ANN之外,概率图形模型(PGMs)、图论和概率方法的耦合还具有描述系统随机变量之间因果结构的能力,并捕捉到不确定性的原则概念。考虑到DNNs和PGMs的特点,它们被有利地结合起来建立强大的神经模型,以了解数据的潜在复杂性。

传统的基于机器学习的NLP系统采用了浅层计算方法(如SVM或Logistic回归),并依赖于手工特征,这类方法耗时、复杂且往往是不够完整的。基于深度学习和神经网络的方法最近在机器翻译、文本分类、命名识别、关系提取、文本相似性等NLP任务上取得了较好的效果。这些神经模型可以从训练数据中自动提取有效的特征表示。

本文主要研究两个NLP任务:关系提取和主题建模。前者的目的是识别句子或文档中实体或名词之间的语义关系。成功地提取语义关系有助于构建结构化知识库,在网络搜索、问答、推荐引擎等下游NLP应用领域很有用。另一方面,主题建模的任务旨在理解文档集合中的主题结构。主题建模是一种流行的文本挖掘工具,它可以自动分析大量的文档集合,并在不实际阅读的情况下理解主题语义。主题建模分别生成用于文档理解和信息检索的Word集群(即主题)和文档表示。

本质上,关系提取和主题建模主要基于从文本中学习到的表示的质量。在本文中,我们提出了特定于任务的学习表示神经模型,并分别在监督和非监督机器学习范式领域进行关系提取和主题建模任务。更具体地说,我们在开发NLP任务的神经模型方面做出了以下贡献:

神经关系提取:首先,我们提出了一种新的基于递归神经网络的table-filling体系结构,以便在句子中联合执行实体和关系提取。然后,我们进一步扩展了跨句子边界实体之间关系的提取范围,并提出了一种新的基于依赖关系的神经网络体系结构。这两个贡献在于机器学习的监督范式。此外,我们还在构建一个受缺乏标记数据约束的鲁棒关系提取器方面做出了贡献,其中我们提出了一种新的弱监督引导技术。考虑到这些贡献,我们进一步探索了递归神经网络的可解释性,以解释它们对关系提取的预测。

神经主题建模:除了有监督神经体系结构外,我们还开发了无监督神经模型,以学习主题建模框架中有意义的文档表示。首先,我们提出了一种新的动态主题模型,它捕获了随着时间的推移的主题。接下来,我们在不考虑时间依赖性的情况下建立了静态主题模型,其中我们提出了神经主题建模体系结构,这些体系结构也利用外部知识,即Word嵌入来解决数据稀疏性。此外,我们还开发了神经主题模型,其中包含了使用单词嵌入和来自许多来源的潜在主题的知识迁移。最后,我们通过引入语言结构(如语序、局部句法和语义信息等)来改进神经主题建模。它处理传统主题模型中的词袋问题。本节中提出的神经NLP模型是基于PGMs、深度学习和ANN交叉技术。

在这里,神经关系提取的任务使用神经网络来学习通常在句子级别上的表示,而不访问更广泛的文档上下文。然而,主题模型可以访问跨文档的统计信息。因此,我们将两种互补的学习范式结合在一个神经复合模型中是有利的,它由一个神经主题和一个神经语言模型组成,使我们能够通过主题模型在文档集合中共同学习主题结构,并通过语言模型在句子中共同学习单词关系。

总的来说,我们在本论文中的研究贡献扩展了基于NLP的系统,用于关系提取和主题建模任务,同时具有最先进的性能。

成为VIP会员查看完整内容
0
43
小贴士
相关论文
Restoring Hebrew Diacritics Without a Dictionary
Elazar Gershuni,Yuval Pinter
0+阅读 · 5月11日
Yang Guan,Shengbo Eben Li,Jingliang Duan,Jie Li,Yangang Ren,Qi Sun,Bo Cheng
0+阅读 · 5月11日
Ziyun Wang,Brenden M. Lake
0+阅读 · 5月11日
Chihiro Watanabe,Taiji Suzuki
0+阅读 · 5月8日
Gianluca Brero,Alon Eden,Matthias Gerstgrasser,David C. Parkes,Duncan Rheingans-Yoo
0+阅读 · 5月5日
Marco Tulio Ribeiro,Tongshuang Wu,Carlos Guestrin,Sameer Singh
10+阅读 · 2020年5月8日
Lingbing Guo,Qingheng Zhang,Weiyi Ge,Wei Hu,Yuzhong Qu
3+阅读 · 2018年10月30日
Alexander Grabner,Peter M. Roth,Vincent Lepetit
7+阅读 · 2018年3月30日
Hongwei Wang,Fuzheng Zhang,Xing Xie,Minyi Guo
18+阅读 · 2018年1月30日
Top