项目名称: 高维数据建模与分析的若干问题

项目编号: No.11271355

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 熊世峰

作者单位: 中国科学院数学与系统科学研究院

项目金额: 50万元

中文摘要: 随着现代科技的迅猛发展,在生命科学、信息科学、材料科学、工业工程以及经济金融等许多领域都产生了大量的复杂高维数据。这些数据不仅维数很高,而且具有强噪声、强相依性和强非线性等特点。如何对这些复杂高维数据进行统计建模和分析是非常重要而且又极具挑战性的一类问题,也是发展统计学的极好机遇。本项目拟研究高维数据的建模与分析中急待解决的若干问题,包括:针对高维回归模型,研究非凸惩罚估计的算法,给出算法的收敛性质与统计性质,并在此基础上研究高维模型平均方法、参数的假设检验和区间估计等;研究高维线性模型参数高效率的稳健估计方法;研究高维计算机实验数据的建模方法,并给出模型的推断和预报方法。

中文关键词: 惩罚回归;变量选择;稳健估计;计算机实验;

英文摘要: As modern science and technology develops rapidly, a huge number of complex high-dimensional data arise in the life sciences, information science, material science, industrial engineering, economy, and finance. Besides high dimensionality, these data have the feature of strong nonlinearity with strong noises and correlations. It is an important and challenging issue how to model and analyze such data, and this provides an opportunity to develop statistics. This project will study several pressing problems in modeling and analysis of high-dimensional data, including that, for high-dimensional regression models, we will study the algorithms of non-convex penalized estimation, and present their convergence properties and statistical properties; Based on the previous results, we will also study the model averaging methods, hypotheses testing and interval estimation; we will study robust estimation with high efficiency for high-dimensional linear models; we will study the modeling methods for high-dimensional data from computer experiments, and provide the inferential and predictive methods under the models.

英文关键词: penalized regression;variable selection;robust estimation;computer experiment;

成为VIP会员查看完整内容
0

相关内容

【ICLR2022】图神经网络复杂时间序列建模
专知会员服务
88+阅读 · 2022年4月15日
【新书稿】数据科学的谱方法:统计的视角,168页pdf
专知会员服务
56+阅读 · 2021年10月28日
专知会员服务
117+阅读 · 2021年10月6日
算法分析导论, 593页pdf
专知会员服务
147+阅读 · 2021年8月30日
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
143+阅读 · 2021年2月3日
最新《统计机器学习》课程,26页ppt
专知会员服务
80+阅读 · 2020年8月30日
多智能体深度强化学习的若干关键科学问题
专知会员服务
184+阅读 · 2020年5月24日
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
神经网络,凉了?
CVer
2+阅读 · 2022年3月16日
【机器学习】深入剖析机器学习中的统计思想
产业智能官
14+阅读 · 2019年1月24日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Knowledge Embedding Based Graph Convolutional Network
Arxiv
24+阅读 · 2021年4月23日
Arxiv
10+阅读 · 2020年6月12日
小贴士
相关VIP内容
【ICLR2022】图神经网络复杂时间序列建模
专知会员服务
88+阅读 · 2022年4月15日
【新书稿】数据科学的谱方法:统计的视角,168页pdf
专知会员服务
56+阅读 · 2021年10月28日
专知会员服务
117+阅读 · 2021年10月6日
算法分析导论, 593页pdf
专知会员服务
147+阅读 · 2021年8月30日
专知会员服务
48+阅读 · 2021年8月29日
专知会员服务
143+阅读 · 2021年2月3日
最新《统计机器学习》课程,26页ppt
专知会员服务
80+阅读 · 2020年8月30日
多智能体深度强化学习的若干关键科学问题
专知会员服务
184+阅读 · 2020年5月24日
相关资讯
基于机器学习的自动化网络流量分析
CCF计算机安全专委会
4+阅读 · 2022年4月8日
图神经网络的困境,用微分几何和代数拓扑解决
机器之心
4+阅读 · 2022年3月27日
神经网络,凉了?
CVer
2+阅读 · 2022年3月16日
【机器学习】深入剖析机器学习中的统计思想
产业智能官
14+阅读 · 2019年1月24日
R语言时间序列分析
R语言中文社区
12+阅读 · 2018年11月19日
用 LDA 和 LSA 两种方法来降维和做 Topic 建模
AI研习社
13+阅读 · 2018年8月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
4+阅读 · 2011年12月31日
国家自然科学基金
5+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员