We tackle the problem of establishing the soundness of approximate bisimilarity with respect to PCTL and its relaxed semantics. To this purpose, we consider a notion of bisimilarity similar to the one introduced by Desharnais, Laviolette, and Tracol, which is parametric with respect to an approximation error $\delta$, and to the depth $n$ of the observation along traces. Essentially, our soundness theorem establishes that, when a state $q$ satisfies a given formula up-to error $\delta$ and steps $n$, and $q$ is bisimilar to $q'$ up-to error $\delta'$ and enough steps, we prove that $q'$ also satisfies the formula up-to a suitable error $\delta"$ and steps $n$. The new error $\delta"$ is computed from $\delta$, $\delta'$ and the formula, and only depends linearly on $n$. We provide a detailed overview of our soundness proof.
翻译:我们处理的是确定PCTL及其宽松语义方面大约两样性是否合理的问题。 为此目的,我们考虑的是类似于Desharnais、Lavilette和Tracol提出的两样概念,它与近似差错$delta美元和测距深度一美元相仿。基本上,我们的“稳健理论”规定,当一州美元满足一个给定的公式最高误差$\delta美元和步骤$n美元,而美元与美元最高误差$\delta美元和足够步骤的两样概念时,我们证明,美元也符合公式最高差错$\delta美元和步骤$n美元。新的差错$\delta$从$delta$、$\delta$和公式计算,并且只线性地取决于美元。我们详细概述了我们的正确性证据。