项目名称: 非均质介质中反常扩散现象的分数阶模型研究

项目编号: No.41302197

项目类型: 青年科学基金项目

立项/批准年度: 2014

项目学科: 天文学、地球科学

项目作者: 夏源

作者单位: 桂林理工大学

项目金额: 22万元

中文摘要: 分数阶对流-弥散方程是研究渗流理论中反常扩散现象的重要工具。已有研究表明:介质的多尺度非均质性是导致反常扩散现象的原因,但是分数阶对流-弥散方程所反映的微观机理及其参数与介质的非均质性的关系尚不清楚。本项目将利用随机方法建立具有多尺度非均质性的介质模型,并用粒子追踪方法模拟其中的溶质运移过程,其结果用来考察各种定义的分数阶对流-弥散方程及其不同的定解条件所反映的微观机理。通过分析分数阶对流-弥散方程参数的物理意义并且探讨其与传统水文地质参数(如渗透系数、弥散度)之间的关系,得到分数阶对流-弥散方程的参数估计方法。推导有效的分数阶对流-弥散方程数值方法,并应用于理想算例和实际算例。本项目将推进分数阶对流-弥散方程在水文地质领域的研究和应用,具有科学意义和潜在应用价值。

中文关键词: 分数阶;非达西;反常扩散;钻孔密度;岩溶泉流量

英文摘要: Fractional advection-dispersion Equation(FADE)is a important tool to study the anomalous diffusion in seepage theory. Present studies show that anomalous diffusion due to multiscale heterogenerity of media. However,the microscale mechanism governed by FADE and the relation between parameters of FADE and heterogenerity of media are unknown. This project will establish the media which has multiscale heterogenerity using stochastic method, and simulate the transport process within the media by particle tracing. The result of the simulation is used to investigate the microscale mechanism reflected by FADE with different definitions and different boundary conditions. By analysis of parameters of FADE and discussion on the relationship with traditional hydrogeologic parameters (such as hydrolic conductivity and dispersity),the FADE'parameters estimating method could be obtained.The effective numerical method of FADE will be derived and applied to ideal case and real case.Since promting the study and application of FADE in hydrogeology,this project has scientific and potentially applicative value.

英文关键词: fractional;non-Darcian;anomalous diffusion;borehole density;karst spring discharge

成为VIP会员查看完整内容
0

相关内容

【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
156+阅读 · 2021年11月10日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【硬核书】矩阵代数:统计学的理论、计算和应用,664页pdf
斯坦福《序列处理的深度学习架构》概述,31页pdf
专知会员服务
56+阅读 · 2021年1月3日
专知会员服务
141+阅读 · 2020年12月3日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
【经典书】数理统计学,142页pdf
专知
2+阅读 · 2021年3月25日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
事理图谱:事件演化的规律和模式
哈工大SCIR
34+阅读 · 2019年7月19日
卷积神经网络四种卷积类型
炼数成金订阅号
18+阅读 · 2019年4月16日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Dynamic Network Adaptation at Inference
Arxiv
0+阅读 · 2022年4月18日
Automated Data Augmentations for Graph Classification
Communication Bounds for Convolutional Neural Networks
Arxiv
33+阅读 · 2021年12月31日
Arxiv
31+阅读 · 2018年11月13日
小贴士
相关VIP内容
【经典书】全局优化算法:理论与应用,820页pdf
专知会员服务
156+阅读 · 2021年11月10日
【开放书】《矩阵流形优化算法》,241页pdf
专知会员服务
94+阅读 · 2021年7月3日
【经典书】数理统计学,142页pdf
专知会员服务
97+阅读 · 2021年3月25日
【硬核书】矩阵代数:统计学的理论、计算和应用,664页pdf
斯坦福《序列处理的深度学习架构》概述,31页pdf
专知会员服务
56+阅读 · 2021年1月3日
专知会员服务
141+阅读 · 2020年12月3日
《常微分方程》笔记,419页pdf
专知会员服务
73+阅读 · 2020年8月2日
机器学习速查手册,135页pdf
专知会员服务
342+阅读 · 2020年3月15日
相关资讯
积分梯度:一种归因分析方法
极市平台
1+阅读 · 2022年3月17日
复数神经网络及其 PyTorch 实现
极市平台
5+阅读 · 2022年1月17日
【经典书】数理统计学,142页pdf
专知
2+阅读 · 2021年3月25日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
41+阅读 · 2019年8月9日
事理图谱:事件演化的规律和模式
哈工大SCIR
34+阅读 · 2019年7月19日
卷积神经网络四种卷积类型
炼数成金订阅号
18+阅读 · 2019年4月16日
【基础数学】- 01
遇见数学
20+阅读 · 2017年7月25日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员