本备忘单是机器学习手册的浓缩版,包含了许多关于机器学习的经典方程和图表,旨在帮助您快速回忆起机器学习中的知识和思想。

这个备忘单有两个显著的优点:

  1. 清晰的符号。数学公式使用了许多令人困惑的符号。例如,X可以是一个集合,一个随机变量,或者一个矩阵。这是非常混乱的,使读者很难理解数学公式的意义。本备忘单试图规范符号的使用,所有符号都有明确的预先定义,请参见小节。

  2. 更少的思维跳跃。在许多机器学习的书籍中,作者省略了数学证明过程中的一些中间步骤,这可能会节省一些空间,但是会给读者理解这个公式带来困难,读者会在中间迷失。

成为VIP会员查看完整内容
0
200

相关内容

“机器学习是近20多年兴起的一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。机器学习理论主要是设计和分析一些让 可以自动“ 学习”的算法。机器学习算法是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法。因为学习算法中涉及了大量的统计学理论,机器学习与统计推断学联系尤为密切,也被称为统计学习理论。算法设计方面,机器学习理论关注可以实现的,行之有效的学习算法。很多 推论问题属于 无程序可循难度,所以部分的机器学习研究是开发容易处理的近似算法。” ——中文维基百科

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等

有兴趣的数据科学专业人士可以通过本书学习Scikit-Learn图书馆以及机器学习的基本知识。本书结合了Anaconda Python发行版和流行的Scikit-Learn库,演示了广泛的有监督和无监督机器学习算法。通过用Python编写的清晰示例,您可以在家里自己的机器上试用和试验机器学习的原理。

所有的应用数学和编程技能需要掌握的内容,在这本书中涵盖。不需要深入的面向对象编程知识,因为工作和完整的例子被提供和解释。必要时,编码示例是深入和复杂的。它们也简洁、准确、完整,补充了介绍的机器学习概念。使用示例有助于建立必要的技能,以理解和应用复杂的机器学习算法。

对于那些在机器学习方面追求职业生涯的人来说,Scikit-Learn机器学习应用手册是一个很好的起点。学习这本书的学生将学习基本知识,这是胜任工作的先决条件。读者将接触到专门为数据科学专业人员设计的蟒蛇分布,并将在流行的Scikit-Learn库中构建技能,该库是Python世界中许多机器学习应用程序的基础。

你将学习

  • 使用Scikit-Learn中常见的简单和复杂数据集
  • 将数据操作为向量和矩阵,以进行算法处理
  • 熟悉数据科学中使用的蟒蛇分布
  • 应用带有分类器、回归器和降维的机器学习
  • 优化算法并为每个数据集找到最佳算法
  • 从CSV、JSON、Numpy和panda格式加载数据并保存为这些格式

这本书是给谁的

  • 有抱负的数据科学家渴望通过掌握底层的基础知识进入机器学习领域,而这些基础知识有时在急于提高生产力的过程中被忽略了。一些面向对象编程的知识和非常基本的线性代数应用将使学习更容易,尽管任何人都可以从这本书获益。
成为VIP会员查看完整内容
0
169

本书涵盖了这些领域中使用Python模块演示的概率、统计和机器学习的关键思想。整本书包括所有的图形和数值结果,都可以使用Python代码及其相关的Jupyter/IPython Notebooks。作者通过使用多种分析方法和Python代码的有意义的示例,开发了机器学习中的关键直觉,从而将理论概念与具体实现联系起来。现代Python模块(如panda、y和Scikit-learn)用于模拟和可视化重要的机器学习概念,如偏差/方差权衡、交叉验证和正则化。许多抽象的数学思想,如概率论中的收敛性,都得到了发展,并用数值例子加以说明。本书适合任何具有概率、统计或机器学习的本科生,以及具有Python编程的基本知识的人。

成为VIP会员查看完整内容
0
156

高斯过程(GPs)为核机器的学习提供了一种有原则的、实用的、概率的方法。在过去的十年中,GPs在机器学习社区中得到了越来越多的关注,这本书提供了GPs在机器学习中理论和实践方面长期需要的系统和统一的处理。该书是全面和独立的,针对研究人员和学生在机器学习和应用统计学。

这本书处理监督学习问题的回归和分类,并包括详细的算法。提出了各种协方差(核)函数,并讨论了它们的性质。从贝叶斯和经典的角度讨论了模型选择。讨论了许多与其他著名技术的联系,包括支持向量机、神经网络、正则化网络、相关向量机等。讨论了包括学习曲线和PAC-Bayesian框架在内的理论问题,并讨论了几种用于大数据集学习的近似方法。这本书包含说明性的例子和练习,和代码和数据集在网上是可得到的。附录提供了数学背景和高斯马尔可夫过程的讨论。

成为VIP会员查看完整内容
0
124

机器学习使用来自各种数学领域的工具。本文件试图提供一个概括性的数学背景,需要在入门类的机器学习,这是在加州大学伯克利分校被称为CS 189/289A。

https://people.eecs.berkeley.edu/~jrs/189/

我们的假设是读者已经熟悉多变量微积分和线性代数的基本概念(达到UCB数学53/54的水平)。我们强调,本文档不是对必备类的替代。这里介绍的大多数主题涉及的很少;我们打算给出一个概述,并指出感兴趣的读者更全面的理解进一步的细节。

请注意,本文档关注的是机器学习的数学背景,而不是机器学习本身。我们将不讨论特定的机器学习模型或算法,除非可能顺便强调一个数学概念的相关性。

这份文件的早期版本不包括校样。我们已经开始在一些证据中加入一些比较简短并且有助于理解的证据。这些证明不是cs189的必要背景,但可以用来加深读者的理解。

成为VIP会员查看完整内容
0
164

本书通过提供真实的案例研究和示例,为使用Python库进行机器学习提供了坚实的基础。它涵盖了诸如机器学习基础、Python入门、描述性分析和预测分析等主题。包括高级机器学习概念,如决策树学习、随机森林、增强、推荐系统和文本分析。这本书在理论理解和实际应用之间采取了一种平衡的方法。所有的主题都包括真实世界的例子,并提供如何探索、构建、评估和优化机器学习模型的逐步方法。

成为VIP会员查看完整内容
Machine Learning using Python by Manaranjan Pradhan.pdf
0
230
小贴士
相关VIP内容
专知会员服务
169+阅读 · 2020年6月10日
专知会员服务
218+阅读 · 2020年6月8日
专知会员服务
55+阅读 · 2020年6月6日
专知会员服务
156+阅读 · 2020年6月3日
专知会员服务
124+阅读 · 2020年5月2日
专知会员服务
39+阅读 · 2020年3月24日
【干货书】机器学习Python实战教程,366页pdf
专知会员服务
230+阅读 · 2020年3月17日
Sklearn 与 TensorFlow 机器学习实用指南,385页pdf
专知会员服务
84+阅读 · 2020年3月15日
【电子书】机器学习实战(Machine Learning in Action),附PDF
专知会员服务
79+阅读 · 2019年11月25日
相关资讯
相关论文
Wenwu Zhu,Xin Wang,Peng Cui
19+阅读 · 2020年1月2日
Sneha Chaudhari,Gungor Polatkan,Rohan Ramanath,Varun Mithal
12+阅读 · 2019年4月5日
Label Embedded Dictionary Learning for Image Classification
Shuai Shao,Yan-Jiang Wang,Bao-Di Liu,Weifeng Liu
4+阅读 · 2019年3月7日
Taking Human out of Learning Applications: A Survey on Automated Machine Learning
Quanming Yao,Mengshuo Wang,Yuqiang Chen,Wenyuan Dai,Hu Yi-Qi,Li Yu-Feng,Tu Wei-Wei,Yang Qiang,Yu Yang
10+阅读 · 2019年1月17日
Claudio Gambella,Bissan Ghaddar,Joe Naoum-Sawaya
8+阅读 · 2019年1月16日
UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction
Leland McInnes,John Healy,James Melville
7+阅读 · 2018年12月6日
Borja Ibarz,Jan Leike,Tobias Pohlen,Geoffrey Irving,Shane Legg,Dario Amodei
4+阅读 · 2018年11月15日
Learning Blind Video Temporal Consistency
Wei-Sheng Lai,Jia-Bin Huang,Oliver Wang,Eli Shechtman,Ersin Yumer,Ming-Hsuan Yang
3+阅读 · 2018年8月1日
Jianxin Lin,Yingce Xia,Tao Qin,Zhibo Chen,Tie-Yan Liu
6+阅读 · 2018年5月1日
Lei Zhang,Shuai Wang,Bing Liu
24+阅读 · 2018年1月24日
Top