项目名称: Ginzburg-Landau涡旋现象中的非线性椭圆问题

项目编号: No.11501231

项目类型: 青年科学基金项目

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 高琦

作者单位: 武汉理工大学

项目金额: 18万元

中文摘要: 一直以来,物理中的Ginzburg-Landua理论与数学中的非线性椭圆偏微分方程有着密切的联系。Ginzburg-Landau模型刻画了在高温超导体,超流体,液态晶体中的相变现象和涡旋现象。涡旋的存在性,数量,位置以及涡旋的局部结构,一直都是物理学家和数学家共同关注的对象。因此,理解涡旋的结构不仅对于数学理论的完善,而且对于实际应用都具有很重要的意义。本项目将分别对一般的耦合Ginzbug-Landau系统的涡旋解在不同边界条件下的稳定性,以及一类带有高阶扰动项的单一Ginzburg-Landau模型涡旋解的结构进行探讨。希望通过本项目的开展,我们可以深入挖掘数学与物理的相互联系,以及进一步发展偏微分方程、变分方法和非线性泛函分析中的新方法。

中文关键词: 椭圆型方程;变分方法;超导漩涡

英文摘要: It is well known that Ginzburg-Landau theory in physics has intimate relation with nonlinear elliptic partial differential equations. A Ginzburg–Landau model describes phase transitions and vortices in high-temperature superconductors, superfluids, and liquid crystals. The presence, number, location and local structure of vortices is an area of intensive mathematical activity which attracts most attention from physicians and mathematicians. Therefore, understanding the structure of vortices will not only help us improving the mathematical analysis, but also help interpretating the physical applications. This project will consider the stability of vortices to a general coupled Ginzburg-Landau system with different boundary conditions, and the structure of vortices to a single Ginzburg-Landau model with higher order perturbation. The goal of this proposed research is to further discover this exciting interplay between mathematics and physics, and to introduce new techniques in partial differential equations, the calculus of variations, and nonlinear functional analysis which are both inspired by and shed new light upon these phenomena.

英文关键词: Elliptic equations;Variational methods;Superconductivity vortices

成为VIP会员查看完整内容
0

相关内容

时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年9月23日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
物理学告诉你,世界的本质原来如此
学术头条
0+阅读 · 2021年11月30日
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
视频 | 傅里叶级数与傅里叶变换
遇见数学
11+阅读 · 2018年2月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月18日
Arxiv
0+阅读 · 2022年4月17日
Summarization with Graphical Elements
Arxiv
0+阅读 · 2022年4月15日
Arxiv
11+阅读 · 2018年5月21日
小贴士
相关主题
相关VIP内容
时间序列计量经济学
专知会员服务
47+阅读 · 2022年4月8日
【博士论文】多视光场光线空间几何模型研究
专知会员服务
22+阅读 · 2021年12月6日
专知会员服务
31+阅读 · 2021年9月23日
【经典书】数理统计学,142页pdf
专知会员服务
96+阅读 · 2021年3月25日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
必须收藏!MIT-Gilbert老爷子《矩阵图解》,一张图看透矩阵
【2020新书】傅里叶变换的离散代数,296页pdf
专知会员服务
113+阅读 · 2020年11月2日
【经典书】操作系统导论,687页pdf
专知会员服务
171+阅读 · 2020年10月28日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员