Dynamic topological logic ($\mathbf{DTL}$) is a trimodal logic designed for reasoning about dynamic topological systems. It was shown by Fern\'andez-Duque that the natural set of axioms for $\mathbf{DTL}$ is incomplete, but he provided a complete axiomatisation in an extended language. In this paper, we consider dynamic topological logic over scattered spaces, which are topological spaces where every nonempty subspace has an isolated point. Scattered spaces appear in the context of computational logic as they provide semantics for provability and enjoy definable fixed points. We exhibit the first sound and complete dynamic topological logic in the original trimodal language. In particular, we show that the version of $\mathbf{DTL}$ based on the class of scattered spaces is finitely axiomatisable over the original language, and that the natural axiomatisation is sound and complete.
翻译:动态表层逻辑 ($\ mathbf{DTL}$) 是用于动态表层系统推理的三模式逻辑。 Fern\' addez- Duque 显示,$\ mathbf{DTL}$ 的自然轴数组不完整, 但他以扩展的语言提供了完整的异化。 在本文中, 我们考虑的是分散空间的动态表层逻辑, 这些空间是每个非空子空间都有一个孤立点的地形空间。 散开的空间出现在计算逻辑中, 因为它们为可变性提供语义并享受可定义的固定点。 我们在原始的三模式语言中展示了第一个健全和完整的动态表层逻辑 。 特别是, 我们显示基于分散空间等级的 $\ mathb{ DTL}$ 版本, 相对于原始语言来说是有限的, 并且自然的氧化性是合理和完整的 。