Influence Maximization (IM), which aims to select a set of users from a social network to maximize the expected number of influenced users, is an evergreen hot research topic. Its research outcomes significantly impact real-world applications such as business marketing. The booming location-based network platforms of the last decade appeal to the researchers embedding the location information into traditional IM research. In this survey, we provide a comprehensive review of the existing location-driven IM studies from the perspective of the following key aspects: (1) a review of the application scenarios of these works, (2) the diffusion models to evaluate the influence propagation, and (3) a comprehensive study of the approaches to deal with the location-driven IM problems together with a particular focus on the accelerating techniques. In the end, we draw prospects into the research directions in future IM research.


翻译:影响最大化(IM)旨在从社会网络中挑选一组用户,以尽量增加预期受影响用户人数,这是一个常青热研究专题,其研究成果对商业营销等现实世界应用产生重大影响。过去十年中,基于地点的网络平台蓬勃发展,吸引研究人员将定位信息嵌入传统的IM研究。在这次调查中,我们从以下关键方面的角度全面审查了现有由地点驱动的IM研究:(1) 审查这些工程的应用情景,(2) 评估影响传播的传播模型,(3) 全面研究处理由地点驱动的IM问题的方法,同时特别关注加速技术。最后,我们为今后的IM研究开辟了研究方向。

0
下载
关闭预览

相关内容

IM:IFIP/IEEE International Symposium on Integrated Network Management。 Explanation:综合网络管理国际研讨会。 Publisher:IFIP/IEEE SIT: http://dblp.uni-trier.de/db/conf/im/index.html
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
66+阅读 · 2022年4月13日
A Survey on Edge Intelligence
Arxiv
52+阅读 · 2020年3月26日
Arxiv
110+阅读 · 2020年2月5日
Arxiv
53+阅读 · 2018年12月11日
VIP会员
相关VIP内容
多标签学习的新趋势(2020 Survey)
专知会员服务
42+阅读 · 2020年12月6日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium6
中国图象图形学学会CSIG
2+阅读 · 2021年11月12日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员