项目名称: 液滴热毛细迁移的准定态假设适用性与稳定性研究
项目编号: No.11472284
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 武作兵
作者单位: 中国科学院力学研究所
项目金额: 82万元
中文摘要: 自从在研究小Marangoni(Ma)数气泡热毛细迁移时提出准定态假设以来,定态迁移已被广泛地应用于气泡、液滴热毛细迁移的研究中,然而在任意Reynolds(Re)和Ma数下它的适用性却未被言及,这可能是导致现有的大Ma数下液滴热毛细迁移的定态理论分析和数值模拟与空间实验测量结果存在定性差别的根本原因。本项目通过采用理论分析和数值模拟方法研究随体坐标系下液滴热毛细迁移微分形式的动量和能量方程及边界条件随着Re和Ma的变化是否存在定态解,即定态解能否满足整体积分形式的动量和能量平衡,阐明准定态假设适用与否的物理机制。对于准定态假设不适用的Re和Ma数范围,通过改变液滴内或外的力场和温度场使得定态解满足整体动量和能量平衡并求出定态解。对于特定的(小和大)Re和Ma数确定定态液滴热毛细迁移的稳定性,给出稳定性判据,并分析微扰解能否改变整体动量和能量平衡,揭示定态解稳定性与准定态假设适用性的关系。
中文关键词: 微重力流体物理;液滴;热毛细;准定态假设;稳定性
英文摘要: Quasi-steady state assumption has been widely applied in the studies on thermocapillary migration of bubbles and drops, since it was proposed in thermocapillary bubble migration at small Marangoni(Ma) numbers. However, its applicability at any Reynolds(Re) and Ma numbers has not been mentioned up to now. This defect may be the key point of the qualitative difference among the results of the steady theoretical analysis, numerical simulation and space experimental investigation at large Ma numbers. This project focuses on whether the steady solutions exist in the differential momentum and energy equations with boundary condisions for the thermocapillary droplet migration in the moving-body coordinate system as the changes of Re and Ma numbers, i.e., whether the solutions can satisfy the global integral momentum and energy conversation with boundary conditions. The physical mechanism for the applicable or not of quasi-steady state assumption will be determined. For the Re and Ma numbers, where the quasi-steady state assumption is not applicable, the force and temperature fileds inside/outside the droplet will be changed, so that the steady solutions can satisfy the global integral momentum and energy conversation with boundary conditions. The steady solutions are then determined. For the special (small and large) Re and Ma numbers, stability of steady thermocapillary droplet migration will be analyzed to show the thersholds of stabilty. It will be provided whether the perturbation solutions can change the global integral momentum and energy conversation with boundary conditions. The relation of the stibility of the steady solutions to the applicability of quasi-steady state assumtption will be determined.
英文关键词: Microgravity fluid physics;Droplet;Thermocapillary;Quasi-steady state assumption;Stability