Network representation learning in low dimensional vector space has attracted considerable attention in both academic and industrial domains. Most real-world networks are dynamic with addition/deletion of nodes and edges. The existing graph embedding methods are designed for static networks and they cannot capture evolving patterns in a large dynamic network. In this paper, we propose a dynamic embedding method, dynnode2vec, based on the well-known graph embedding method node2vec. Node2vec is a random walk based embedding method for static networks. Applying static network embedding in dynamic settings has two crucial problems: 1) Generating random walks for every time step is time consuming 2) Embedding vector spaces in each timestamp are different. In order to tackle these challenges, dynnode2vec uses evolving random walks and initializes the current graph embedding with previous embedding vectors. We demonstrate the advantages of the proposed dynamic network embedding by conducting empirical evaluations on several large dynamic network datasets.
翻译:低维矢量空间的网络代表性学习在学术和工业领域都引起了相当大的关注。 大多数真实世界网络是动态的,增加了/删除节点和边缘。 现有的图形嵌入方法是为静态网络设计的, 它们无法在大型动态网络中捕捉不断变化的模式。 在本文中, 我们提议了一种动态嵌入方法, dynnode2vec, 以众所周知的图形嵌入方法Node2vec 为基础。 Node2vec 是静态网络的随机步行嵌入方法。 应用静态网络嵌入动态网络有两个关键问题:(1) 每一步都产生随机行走时间消耗时间;(2) 在每个时标中嵌入矢量空间是不同的。 为了应对这些挑战, dynnode2vec 使用不断变化的随机行走方式, 并初始化当前图形嵌入先前嵌入的矢量。 我们通过对多个大型动态网络数据集进行实证评估, 展示了拟议动态网络嵌入的优势。