单张GPU搞定GPT-3超参数!先训练小模型,再“一键迁移” | 已开源

2022 年 3 月 13 日 量子位
丰色 发自 凹非寺
量子位 | 公众号 QbitAI

“一个GPU没法训练GPT-3,更别提在上面调整超参数了。”

不不不,现在情况有变——

在单个GPU上完全可以调整大规模模型的超参数。

怎么说?

原来有人发现了一种新的调参方法,无论模型规模怎么变化,所得的最优超参数都能保持性能稳定。

由此一来,我们可以先训练一个小版本的模型,在上面间接调整好超参,然后以零样本的方式直接将它们复制到全尺寸模型上,就能获得相当不错的性能。

这对手里GPU资源不够的人来说简直不要太好了吧。

目前,相关帖子也在Reddit上引起热议,得到了300+的点赞支持。

在一个GPU上调参GPT-3大模型

方法名叫muP (Maximal Update Parametrization),作者分别来自微软和OpenAI

想法很简单,利用的是他们在之前的工作中发现的一个叫做µP的特殊参数化思路:

窄神经网络和宽神经网络共享同一组最优超参数,即使宽度无限大(width->∞)时也一样。

具体原理可以参见论文《Feature Learning in Infinite-Width Neural Networks》。

可共享的超参数包括学习率learning rate、learning rate schedule、initialization、parameter multipliers……甚至可以单独针对每个参数张量。

作者在宽度高达4096的Transformer以及ResNet上验证了这一结论。

因此,资源匮乏的炼丹er就可以在单张GPU上对一个小版本的GPT-3模型进行超参数调整:

如果在这个小模型上得到的参数接近最优,那么在大模型上也可以得到一样的结果。

ps. 这种调参方式又被命名为“µ迁移(µTransfer)”。

具体效果如何?

作者训练了一个只有4000万参数规模的小型GPT-3,它小到可以直接跑在一张GPU上。

然后把它的超参数“µ迁移”到一个有67亿参数的大规模GPT-3上,结果发现它的性能和原始的GPT-3完全相当——尽管原GPT-3的参数规模还是它的两倍!

而这一调整成本只占整个预训练成本的7%。

由于模型规模增大,直接调整小型模型的成本仍大致相同,如果用该方式来调参175亿规模的GPT-3,其成本可能最多只有总预训练成本的0.3%。

好了,这时你可能会问:能不能只缩小模型的宽度呢?

作者表示,对于“non-width stuff”,没有理论保证。

不过好消息是,他们在preLN Transformer的合理范围内对depth、batch size、sequence length和timestep的迁移效果进行了测试。

其中,他们将BERT-base和BERT-large在宽度和深度上缩小到同样的规模, 然后同时进行超参数调整后发现:

相比已经调优的megatron BERT基线,两者的性能都得到了改善,尤其是BERT-large提升更大

由此也总结出一个道理:

迁移后的模型规模越大,收益越高。

所以作者还调侃道,虽然我们没有测试175亿规模的GPT-3,但保证结果能让你“流口水”

说了这么多,到底如何实现?

下表概括了如何通过fan-in或fan-out调整你的模型的initialization和learning rate。

其中粉色文本为µP,括号中的灰色文本为pytorch默认值。

当然,如果你不想自己手动操作,作者也开源了Pytorch实现,通过pip install mup就可以应用到你的模型中。

关于作者

一作名叫Greg Yang,微软高级研究员。

通讯作者为微软研究院深度学习技术中心合伙人研究经理、IEEE Fellow高剑峰。

还有两位华人作者分别为来自微软的Liu Xiaodong(北京邮电大学校友)和Chen Weizhu (已在微软工作16年)

他们的这篇成果已被NeurIPS 2021接收。

GitHub链接:
https://github.com/microsoft/mup

论文地址:
https://arxiv.org/abs/2203.03466

官方博客链接:
https://www.microsoft.com/en-us/research/blog/%C2%B5transfer-a-technique-for-hyperparameter-tuning-of-enormous-neural-networks/

Reddit讨论:
https://www.reddit.com/r/MachineLearning/comments/tb0jm6/r_you_cant_train_gpt3_on_a_single_gpu_but_you_can/

本文系网易新闻•网易号特色内容激励计划签约账号【量子位】原创内容,未经账号授权,禁止随意转载。

直播报名 | 如何建立AI生态的“Android”

从感知到认知,AI还需要多久才能触及生产核心?从软件到数件,AI生态该如何建立自己“Android”?

3月16日19:30,「量子位·视点」CEO/CTO系列分享活动将邀请天云数据CEO雷涛直播分享个人见解。扫码预约直播围观吧~

量子位 QbitAI · 头条号签约作者

վ'ᴗ' ի 追踪AI技术和产品新动态

一键三连「分享」「点赞」和「在看」

科技前沿进展日日相见 ~


登录查看更多
0

相关内容

在贝叶斯统计中,超参数是先验分布的参数; 该术语用于将它们与所分析的基础系统的模型参数区分开。
专知会员服务
18+阅读 · 2021年9月16日
专知会员服务
14+阅读 · 2021年7月24日
专知会员服务
50+阅读 · 2021年6月17日
【GPT-3作者亲解】超大型语言模型少样本学习,109页ppt
专知会员服务
105+阅读 · 2020年12月19日
少即是多?非参数语言模型,68页ppt
专知会员服务
20+阅读 · 2020年11月22日
模型压缩究竟在做什么?我们真的需要模型压缩么?
专知会员服务
25+阅读 · 2020年1月16日
单个GPU也能训练GPT-3!快来看看HP调优新范式吧!
大数据文摘
0+阅读 · 2022年4月10日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Arxiv
17+阅读 · 2021年3月29日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
10+阅读 · 2018年4月19日
VIP会员
相关VIP内容
专知会员服务
18+阅读 · 2021年9月16日
专知会员服务
14+阅读 · 2021年7月24日
专知会员服务
50+阅读 · 2021年6月17日
【GPT-3作者亲解】超大型语言模型少样本学习,109页ppt
专知会员服务
105+阅读 · 2020年12月19日
少即是多?非参数语言模型,68页ppt
专知会员服务
20+阅读 · 2020年11月22日
模型压缩究竟在做什么?我们真的需要模型压缩么?
专知会员服务
25+阅读 · 2020年1月16日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员