项目名称: 空间域反常扩散中源项识别问题的正则化理论及算法
项目编号: No.11301168
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 郑光辉
作者单位: 湖南大学
项目金额: 22万元
中文摘要: 本项目主要考虑空间域反常扩散中源项识别问题的正则化理论和数值算法。我们以含有分数阶Laplace算子的空间分数阶对流扩散方程(SFADE)作为数学模型来描述溶质在空间域上的反常扩散。实验表明,它比起经典的对流扩散方程(ADE)能更好地刻画溶质反常扩散的"超弥散"和"拖尾"现象,特别是在地下水污染方面的应用引起广泛关注。空间域反常扩散中的源项识别问题具有很强的不适定性,再加上分数阶Laplace算子本身所固有的非局部性和高奇异性,使得问题极具困难性和挑战性。但注意到分数阶Laplace算子的Fourier分析理论较为完善,所以我们首先利用Fourier分析的相关工具建立条件稳定性。其次运用卷积正则化方法和Morozov不一致原理导出后验误差估计。最后,我们构造基于快速Fourier变换(FFT)的快速算法,实现对污染源及时快捷的反演,为环境的监测、诊断和保护提供科学的依据。
中文关键词: 反常扩散;源项识别;Backward问题;Cauchy问题;正则化方法
英文摘要: In this project, we consider the regularization theory and numerical algorithms of source identification in spatial domain anomalous diffusion. The space fractional advection-diffusion equation (SFADE) containing fractional Laplacian has been used as a mathematical model and describes the anomalous diffusion of solute in spatial domain. The experiments demonstrate that SFADE can describe the 'super dispersion' and 'tailing' phenomenon of anomalous diffusion more successfully than classical advection-diffusion equation (ADE). Especially in the application to groundwater pollution has gained wide attention. The source identification in spatial domain anomalous diffusion is highly ill-posed. Moreover, the fractional Laplacian possesses nonlocality and high singularity. These factors lead to difficulty and challenge. But notice that the Fourier analysis theory of fractional Laplacian is relatively complete. So, first, we apply the relevant method of Fourier analysis to obtain conditional stability. Second, we use convolution regularization method and Morozov discrepancy principle to deduce a posteriori error estimate. Finally, we construct fast algorithm based on fast Fourier transform (FFT) . By using above fast algorithm, we can identify the pollution source timely and supply scientific evidence for monitoring, d
英文关键词: anomalous diffusion;source identification;Backward problem;Cauchy problem;regularization method