Kernel smooth is the most fundamental technique for data density and regression estimation. However, time-consuming is the biggest obstacle for the application that the direct evaluation of kernel smooth for $N$ samples needs ${O}\left( {{N}^{2}} \right)$ operations. People have developed fast smooth algorithms using the idea of binning with FFT. Unfortunately, the accuracy is not controllable, and the implementation for multivariable and its bandwidth selection for the fast method is not available. Hence, we introduce a new MATLAB toolbox for fast multivariate kernel regression with the idea of non-uniform FFT (NUFFT), which implemented the algorithm for $M$ gridding points with ${O}\left( N+M\log M \right)$ complexity and accuracy controllability. The bandwidth selection problem utilizes the Fast Monte-Carlo algorithm to estimate the degree of freedom (DF), saving enormous cross-validation time even better when data share the same grid space for multiple regression. Up to now, this is the first toolbox for fast-binning high-dimensional kernel regression. Moreover, the estimation for local polynomial regression, the conditional variance for the heteroscedastic model, and the complex-valued datasets are also implemented in this toolbox. The performance is demonstrated with simulations and an application on the quantitive EEG.
翻译:然而,耗时是应用以下应用的最大障碍:直接评价以美元为单位的样本的内核平滑需要${O ⁇ left ( ⁇ N ⁇ 2 ⁇ \\right) 美元。人们利用FFFT的宾进概念开发了快速的顺畅算法。不幸的是,准确性无法控制,多变量及其带宽选择对快速方法的运用无法控制。因此,我们引入了一个新的 MATLAB工具箱,用于快速多变量内核回转,其想法是非单式FFFT(NUFFT),它用 ${O ⁇ left (N+M\log M\right) 的操作来实施$M$网格点的算法。 带宽选择问题使用快速的蒙特-卡罗算法来估计自由度(DF),在数据共享同一网格空间进行多次回归时保存了巨大的交叉比较时间。 到目前为止,这是在高维度的FFFFFFFT(NUFFT) 中快速键入的首个工具箱。 该模型的General-binal-real reliformagial regildalational 也是该模型的模型变压工具。该模型的模型的模型。此外的模型的模型的变压工具。