项目名称: 统计参数估计的信息几何方法
项目编号: No.61302149
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 无线电电子学、电信技术
项目作者: 程永强
作者单位: 中国人民解放军国防科学技术大学
项目金额: 24万元
中文摘要: 统计参数估计是统计学和信号处理的一个重要分支,广泛应用于雷达、声纳、语音、通信、自动控制等领域。参数估计精度与估计方法是统计参数估计的两个核心问题。根据经典的估计理论,对于非线性测量的参数估计问题,估计精度通常无法达到Cramér-Rao下界,表明参数估计过程中存在着信息的“损失”,传统的估计算法与估计精度描述方法均存在一定的局限性,需要采用新的数学工具从更本质的层面上对上述理论问题进行研究。 本项目拟以信息几何理论为工具,将参数估计测量模型的统计特性“翻译”为概率分布流形的几何结构,将参数估计问题转化为统计流形中的几何投影问题,采用信息几何方法寻求非线性测量模型的最优参数估计。重点研究统计参数估计问题的信息几何表征、估计的信息损失、最优估计算法等科学问题,推动信号处理理论与方法的创新。
中文关键词: 统计参数估计;非线性估计;信息几何;统计流形;信息损失
英文摘要: Statistical parameter estimation, which has found widely applications in the areas of radar, sonar, speech, communications and automatic control, is an important branch of statistics and signal processing. The accuracy of estimators and estimation algorithms are two core issues of statistical parameter estimation problems. According to the basic theory of statistical estimation, the Cramér-Rao lower bound is usually not achieveable for nonlinear parameter estimation problems, which indicates that there is information loss during the parameter estimation process. Therefore, the conventional theory of accuracy of estimators and optimal estimation algorithms has limitations in a certain extent, which requires advanced mathematical tools to analyze. Information Geometry is the fundamental and cutting-edge discipline in the field of information science, which studies statistical problems on manifolds of probability distributions using the methods of differential geometry. The underlying project is to explore optimal nonlinear estimation algorithms via theory of information geometry, in which statistical properties of measurement model are translated into geometric structures of manifolds of probability distributions, while the parameter estimation problems are regarded as geometric projection in statistical manifo
英文关键词: statistical parameter estimation;nonlinear estimation;information geometry;statistical manifold;information loss