项目名称: 激光点云数据处理中基于贝叶斯抽样一致性的模型参数稳健估计方法研究
项目编号: No.41471360
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 天文学、地球科学
项目作者: 康志忠
作者单位: 中国地质大学(北京)
项目金额: 81万元
中文摘要: 激光点云数据后处理技术发展的滞后,是制约激光雷达技术应用的瓶颈。点云数据处理中通常会涉及到模型参数的估计(如点云拟合中的特征几何模型、点云拼接中的坐标转换模型、点云与影像配准中的映射模型等)。由于点云数据中通常包含大量的噪声点,因此如何进行模型参数的稳健估计是当前国内外点云数据处理的研究重点。本课题基于贝叶斯理论和随机抽样一致性(RANSAC)方法,对利用模型收敛度统计检验的贝叶斯抽样一致性稳健估计方法进行研究,该研究的主要内容包括:基于假设模型收敛度统计检验的先验概率确定;顾及假设检验数据点集整体正确性的局内点概率更新;基于极大似然函数的假设检验模型评价函数构建;多模型贝叶斯抽样一致性算法;利用贝叶斯抽样一致性的点云数据处理中主要模型参数稳健估计。贝叶斯抽样一致性稳健估计方法的研究将有助于点云数据处理中模型参数稳健估计问题的解决,从而促进激光雷达数据后处理技术的发展。
中文关键词: 稳健估计;激光点云;点云拟合;点云配准;贝叶斯抽样一致性
英文摘要: The development of the techology of laser point cloud post-processing is much slower than that of the hardware of LiDAR, which currently restrict the applications of LiDAR. The estimation of the parameters of a model is often involved in the point cloud processing (e.g. the geometric model of a feature in the fitting of point clouds, the rigid transformation model in point cloud registration, and the mapping model of scan-to-image registration). As the point clouds always contain a plenty of noises,it is a focus of research in point cloud processing worldwide how to implement the robust estimation of the parameters of a model. Based on Baysian theory and RANSAC, this proposal carries out the research on Baysian Sampling Consensus (BaySAC) method using convergence evaluation of hypothesis models, which consists of the following contents: the determination of prior probability based on convergence evaluation of hypothesis models; the update of inlier probability in terms of the correctness of the hypothesis data set; the construction of the cost function of the hypothesis testing using Maxmum Likelihood Function; Multiple-BaySAC algorithm; the robust estimation of the main models in point cloud processing. The research on BaySAC robust estimation method will help solving the problems suffered by the robust estimation of the parameters of the models in point cloud processing, so that promote the development of the technology of LiDAR data post-processing.
英文关键词: Robust estimation;Laser point cloud;Fitting of point clouds;Registration of point clouds;Bayesian Sampling Consensus