项目名称: 本原置换群在对称设计上的作用
项目编号: No.11301158
项目类型: 青年科学基金项目
立项/批准年度: 2014
项目学科: 数理科学和化学
项目作者: 董会莉
作者单位: 河南师范大学
项目金额: 22万元
中文摘要: 研究自同构群在设计上的各种作用是群论研究中一个重要方面。目前国际上的研究前沿课题是:在假定设计的自同构群具有良好的传递性的条件下,试图决定设计和其自同构群。对称设计是点与区组数目相等的设计。随着旗传递2-(v,k,2)对称设计的分类完成以后,我们开始关注区传递对称设计的分类问题。本项目研究几乎单型本原群在区传递2-(v,k,2)对称设计上的作用。拟利用有限单群分类定理,将设计的自同构群的基柱分为以下四种情形:即零散单群,交错群,例外Lie型单群及典型群来讨论,解决设计的存在性及其分类和构造问题。
中文关键词: 设计;区传递;点本原;零散单群;交错单群
英文摘要: The research on all kinds of actions of automorphism groups on designs is an important part in the study of group theory.Now the international hot topic is:on the assumption that automorphism groups of designs have good transitivity,we try to decide the designs and their automorphism groups.A symmetric design is a design with equal numbers of points and blocks.After the classification of flag-transitive 2-(v,k,2) symmetric designs,our attention is focused on the classification problem of block-transitive symmetric designs.In this item,we study the action of primitive groups of almost simple type on block-transitive 2-(v,k,2) symmetric designs.We will use the classification theorem of finite simple groups, and discuss these four cases,that is,the sole of automorphism groups of designs are sporadic simple groups,alternating groups,exceptional simple groups of Lie type and classical groups,and solve the existsence,classification and constructing of designs.
英文关键词: design;block-transitive;point-primitive;sporadic simple group;alternating group