Let $W$ be a finite set which simultaneously serves as the universe of any poset $(W,\preceq)$ and as the vertex set of any graph $G$. Our algorithm, abbreviated A-I-I, enumerates (in a compressed format using don't-care symbols) all $G$-independent order ideals of $(W,\preceq)$. For certain instances the high-end Mathematica implementation of A-I-I compares favorably to the hardwired Mathematica commands {\tt BooleanConvert} and {\tt SatisfiabilityCount}. The A-I-I can be parallelized and adapts to a polynomial total time algorithm that enumerates the modelset of any Boolean 2-CNF.
翻译:$W 是一个限定值的集合, 它同时作为任何表面$( W,\ preceq) 的宇宙, 作为任何图形$G$的顶点。 我们的算法, 缩略的 A- I- I, 列举( 使用不关心符号的压缩格式) $( W,\ preceq) 的所有基价独立顺序理想 $(,\ preceq) 。 在某些情况下, A- I 的高端数学执行率比硬对齐的数学命令 ~ ttBooleanConvert 和 tt retaisfilableCount 都好比。 A- I- I 可以平行, 并适应一个计算任何 Boulean 2- CNF 模型集的多元总时间算法 。