项目名称: 非自治动力系统拉回指数吸引子的存在性及其应用研究

项目编号: No.11261027

项目类型: 地区科学基金项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 李永军

作者单位: 兰州城市学院

项目金额: 45万元

中文摘要: 本项目主要研究非自治微分方程的稳定性。在自然界中,有许多不同的运动,如:天体与机械运动、反应扩散运动、流体运动和波的传播等。这些运动都受到微分方程的控制。其中一些运动的受控方程是偏微分方程,如:反应扩散方程、流体运动和波的传播等。稳定性是自然运动的主要特征,没有稳定性,任何系统都将没有秩序。 一个非自治的微分方程,它的解生成一簇过程(非自治的无穷维动力系统)。本项目的主要工作是研究非自治的无穷维动力系统解的长时间行为。拉回吸引子的存在性无疑是研究非自治动力系统最重要的工具之一。拉回吸引子是紧的、不变的吸引集,不能精确刻画吸引速度及其几何结构,拉回指数吸引子克服了这一缺点。我们通过构造拉回指数吸引子,找出拉回指数吸引子存在的充分条件,试图将理论研究结果应用到不同的非自治系统。

中文关键词: 动力系统;吸收集;拉回指数吸引子;非紧性测度;分形维数

英文摘要: The project aims to do some research into the stability of nonautonomous difference equation. In the natural world, there are various of movements, such as planetary motion and mechanical movement, the movement of reacation diffusion, fluid movement and wave dispersion, which are all under the control of difference equation. Some of the movements are under the control of partial difference equation, such as reaction diffusion equation, fluid movement and the dispersion of wave. Stability is a prominent property of any natural movement, without which any system would be out of order. The solution of a nonautonomous difference equation generate a process (nonautonomous infinite dimension dynamical system).The main task of this project is to study the long action of the solution to nonautomous infinite dimension dynamical system. There is no doubt that the existence of pullback attractor is a fundmental means. Pullback attractor is a compact, invariant and arrtacting set which is incapable of representing attracting rate and its geometric structure, while pullback exponential attractor hits off this fault. By structuring the pullback exponential attractor, we design to find the sufficient condition for the existence of pullback exponential attractor and thus attempt to apply the theoretical research results to d

英文关键词: Dynamical system;Absorbing set;Pulllbqce exponential attractors;Noncompactness measure;Fractial dimension

成为VIP会员查看完整内容
0

相关内容

基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
专知会员服务
31+阅读 · 2021年6月24日
【干货书】线性代数及其应用,688页pdf
专知会员服务
166+阅读 · 2021年6月10日
专知会员服务
112+阅读 · 2021年3月23日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【硬核书】矩阵代数:统计学的理论、计算和应用,664页pdf
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【硬核书】不完全信息决策理论,467页pdf
专知会员服务
351+阅读 · 2020年6月24日
为什么要做传播,有何价值 | 高阶产品经理和运营必读
人人都是产品经理
0+阅读 · 2022年3月23日
做了一年企业内部系统,我学会了竞争和博弈
人人都是产品经理
0+阅读 · 2022年3月14日
基于文档的对话技术研究
专知
2+阅读 · 2022年2月20日
SQN算法效果及代码: Breakout-ram-v4 打砖块
CreateAMind
12+阅读 · 2019年1月21日
注意力机制(Attention)最新综述论文及相关源码
人工智能学家
30+阅读 · 2018年11月17日
视频 | 计算机科学中的数学 01
遇见数学
15+阅读 · 2018年4月14日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月17日
Prefix-Free Coding for LQG Control
Arxiv
0+阅读 · 2022年4月15日
Principal Neighbourhood Aggregation for Graph Nets
Arxiv
17+阅读 · 2020年6月7日
小贴士
相关VIP内容
基于文档的对话技术研究
专知会员服务
19+阅读 · 2022年2月20日
专知会员服务
31+阅读 · 2021年6月24日
【干货书】线性代数及其应用,688页pdf
专知会员服务
166+阅读 · 2021年6月10日
专知会员服务
112+阅读 · 2021年3月23日
【2021新书】流形几何结构,322页pdf
专知会员服务
53+阅读 · 2021年2月22日
【硬核书】矩阵代数:统计学的理论、计算和应用,664页pdf
【哈佛经典书】概率论与随机过程及其应用,382页pdf
专知会员服务
61+阅读 · 2020年11月14日
《常微分方程》笔记,419页pdf
专知会员服务
71+阅读 · 2020年8月2日
【硬核书】不完全信息决策理论,467页pdf
专知会员服务
351+阅读 · 2020年6月24日
相关资讯
为什么要做传播,有何价值 | 高阶产品经理和运营必读
人人都是产品经理
0+阅读 · 2022年3月23日
做了一年企业内部系统,我学会了竞争和博弈
人人都是产品经理
0+阅读 · 2022年3月14日
基于文档的对话技术研究
专知
2+阅读 · 2022年2月20日
SQN算法效果及代码: Breakout-ram-v4 打砖块
CreateAMind
12+阅读 · 2019年1月21日
注意力机制(Attention)最新综述论文及相关源码
人工智能学家
30+阅读 · 2018年11月17日
视频 | 计算机科学中的数学 01
遇见数学
15+阅读 · 2018年4月14日
GAN的数学原理
算法与数学之美
14+阅读 · 2017年9月2日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
微信扫码咨询专知VIP会员