基于文档的对话是目前对话领域一个新兴的热点任务.与以往的任务不同,其需要将对话信息和文档信息综合进行考虑.然而,先前的工作着重考虑二者之间的关系,却忽略了对话信息中的句子对回复生成的作用具有差异性.针对这一问题,提出了一种新的辩证看待对话历史的方法,在编码阶段讨论利用历史和忽略历史2种情况进行语义信息的建模,并采用辩证整合的方式进行分支信息的汇总.由此避免了在历史信息与当前对话不相关时,其作为噪声被引入进而损害模型性能,同时也强化了当前对话对信息筛选的指导作用.实验结果表明,该模型与现有基线相比,能够生成更为符合当前语境且信息量更加丰富的回复,从而说明其能够更好地理解对话信息并进行知识筛选.并且通过进行消融实验,也验证了各模块在建模过程中的有效性.