项目名称: 高维统计模型中的稳健推断及其应用
项目编号: No.11201317
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 数理科学和化学
项目作者: 胡涛
作者单位: 首都师范大学
项目金额: 22万元
中文摘要: 本项目主要研究近年来被广泛关注且具有重要应用前景的三类统计模型(超高维线性模型,广义变系数单指标模型,广义可加部分线性模型)中的稳健方法。对于超高维线性模型,我们将研究基于加权Wilcoxon型估计的稳健变量扫描方法。利用U过程理论,我们将建立该方法的sure screening 性质,并利用此方法来研究超高维部分线性模型的稳健变量扫描问题。我们将通过模拟和实际数据分析来验证所提方法的优良性。对于广义变系数单指标模型,将研究基于样条方法的稳健拟似然估计,并通过构造稳健拟似然比统计量来研究假设检验,通过模拟和实际数据分析来说明所提出的方法的可行性。对于广义可加部分线性模型,本项目将利用稳健拟似然和B 样条方法,研究参数分量与非参数分量的稳健估计,获得估计的大样本性质,利用惩罚似然方法对参数分量与非参数分量进行稳健变量选择,并将所提出的方法应用于实际数据分析。
中文关键词: 稳健统计;半参数回归;高维数据;大样本性质;
英文摘要: In this project, we will study robust inference in three kinds of statistical models(ultra-high dimensional linear model, generalized partially varying coefficient single-index model, generalized additive partial linear model). For ultra-high dimensional linear model, we will study a robust variable screening method based on weighted Wilcoxon type estimation. Based on U-process theory, we will study the sure independence screening property. Furthermore, the proposed method can be used to deal with ultra-high dimensional partial linear model. The estimation efficiency of our method will be demonstrated through extensive comparisons with other methods by simulation studies and one real data example. For generalized partially varying coefficient single-index model, a class of B-spline based sieve robust quasi-likelihood estimation will be proposed and the asymptotic properties of the proposed estimators will be discussed. Besides, we will study the problem of providing a test statistic, more resistant to outliers than classical methods,to decide between a linear and a semiparametric model. Simulation studies will be conducted to examine the small-sample properties of the proposed estimates and a real dataset will be used to illustrate our approach. For generalized additive partial linear models, we will employ
英文关键词: robust statistics;semiparametric regression model;high dimensional data;large sample properties;