Backward stochastic differential equations (BSDEs) appear in numeruous applications. Classical approximation methods suffer from the curse of dimensionality and deep learning-based approximation methods are not known to converge to the BSDE solution. Recently, Hutzenthaler et al. (arXiv:2108.10602) introduced a new approximation method for BSDEs whose forward diffusion is Brownian motion and proved that this method converges with essentially optimal rate without suffering from the curse of dimensionality. The central object of this article is to extend this result to general forward diffusions. The main challenge is that we need to establish convergence in temporal-spatial H\"older norms since the forward diffusion cannot be sampled exactly in general.
翻译:古代近似法受到维度的诅咒,而深层次的学习近近似法并不为人所知,无法与BSDE解决方案汇合。最近,Hutzenthaler等人(arXiv:2108.10602)为BSDE采用一种新的近似法,其前向扩散是布朗运动,并证明这种方法与基本上最佳的速率相融合,而不会受到维度的诅咒。本条款的中心目标是将这一结果扩大到一般的前向扩散。主要挑战是,我们需要建立时间空间H\"老化规范的趋同,因为前向扩散无法完全抽样。